Fatty acid transport: the roads taken

被引:118
作者
Schaffer, JE [1 ]
机构
[1] Washington Univ, Sch Med, Dept Internal Med, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Dept Biol Mol, St Louis, MO 63110 USA
[3] Washington Univ, Sch Med, Dept Pharmacol, St Louis, MO 63110 USA
来源
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM | 2002年 / 282卷 / 02期
关键词
long-chain fatty acid transport; permeation;
D O I
10.1152/ajpendo.00462.2001
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Efficient uptake and channeling of long-chain fatty acids (LCFAs) are critical cellular functions. Although spontaneous flip-flop of nonionized LCFAs from one leaflet of a bilayer to the other is rapid, evidence is emerging that proteins are important mediators and/or regulators of trafficking of LCFAs into and within cells. Genetic screens have led to the identification of proteins that are required for fatty acid import and utilization in prokaryotic organisms. In addition, functional screens have elucidated proteins that facilitate fatty acid import into mammalian cells. Although the mechanisms by which these proteins mediate LCFA import are not well understood, studies in both prokaryotic and eukaryotic organisms provide compelling evidence that uptake of LCFAs across cellular membranes is coupled to esterification by acyl-CoA synthetases. This review will summarize results of studies of non-protein-mediated and protein-mediated LCFA transport and discuss how these different mechanisms may contribute to cellular metabolism.
引用
收藏
页码:E239 / E246
页数:8
相关论文
共 77 条
[1]  
ABUMRAD NA, 1984, J BIOL CHEM, V259, P8945
[2]  
ABUMRAD NA, 1993, J BIOL CHEM, V268, P17665
[3]  
ABUMRAD NA, 1981, J BIOL CHEM, V256, P9183
[4]   Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats [J].
Aitman, TJ ;
Glazier, AM ;
Wallace, CA ;
Cooper, LD ;
Norsworthy, PJ ;
Wahid, FN ;
Al-Majali, KM ;
Trembling, PM ;
Mann, CJ ;
Shoulders, CC ;
Graf, D ;
St Lezin, E ;
Kurtz, TW ;
Kren, V ;
Pravenec, M ;
Ibrahimi, A ;
Abumrad, NA ;
Stanton, LW ;
Scott, J .
NATURE GENETICS, 1999, 21 (01) :76-83
[5]   Reversible binding of long-chain fatty acids to purified FAT, the adipose CD36 homolog [J].
Baillie, AGS ;
Coburn, CT ;
Abumrad, NA .
JOURNAL OF MEMBRANE BIOLOGY, 1996, 153 (01) :75-81
[6]   Uptake of long chain free fatty acids is selectively up-regulated in adipocytes of Zucker rats with genetic obesity and non-insulin-dependent diabetes mellitus [J].
Berk, PD ;
Zhou, SL ;
Kiang, CL ;
Stump, D ;
Bradbury, M ;
Isola, LM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (13) :8830-8835
[7]   INCREASED GLYCOLYTIC METABOLISM IN CARDIAC HYPERTROPHY AND CONGESTIVE FAILURE [J].
BISHOP, SP ;
ALTSCHULD, RA .
AMERICAN JOURNAL OF PHYSIOLOGY, 1970, 218 (01) :153-+
[8]   MOLECULAR AND BIOCHEMICAL ANALYSES OF FATTY-ACID TRANSPORT, METABOLISM, AND GENE-REGULATION IN ESCHERICHIA-COLI [J].
BLACK, PN ;
DIRUSSO, CC .
BIOCHIMICA ET BIOPHYSICA ACTA-LIPIDS AND LIPID METABOLISM, 1994, 1210 (02) :123-145
[9]  
BLACK PN, 1992, J BIOL CHEM, V267, P25513
[10]   Acute regulation of fatty acid uptake involves the cellular redistribution of fatty acid translocase [J].
Bonen, A ;
Luiken, JJFP ;
Arumugam, Y ;
Glatz, JFC ;
Tandon, NN .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (19) :14501-14508