Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels

被引:355
作者
Matthews, BD
Overby, DR
Mannix, R
Ingber, DE
机构
[1] Harvard Univ, Sch Med, Childrens Hosp, Vasc Biol Program,Dept Pathol, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Childrens Hosp, Vasc Biol Program,Dept Surg, Boston, MA 02115 USA
关键词
integrin; focal adhesion; mechanotransduction; prestress; tension; magnetometry;
D O I
10.1242/jcs.02760
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
To understand how cells sense and adapt to mechanical stress, we applied tensional forces to magnetic microbeads bound to cell-surface integrin receptors and measured changes in bead displacement with sub-micrometer resolution using optical microscopy. Cells exhibited four types of mechanical responses: (1) an immediate viscoelastic response; (2) early adaptive behavior characterized by pulse-to-pulse attenuation in response to oscillatory forces; (3) later adaptive cell stiffening with sustained (> 15 second) static stresses; and (4) a large-scale repositioning response with prolonged (> 1 minute) stress. Importantly, these adaptation responses differed biochemically. The immediate and early responses were affected by chemically dissipating cytoskeletal prestress (isometric tension), whereas the later adaptive response was not. The repositioning response was prevented by inhibiting tension through interference with Rho signaling, similar to the case of the immediate and early responses, but it was also prevented by blocking mechanosensitive ion channels or by inhibiting Src tyrosine kinases. All adaptive responses were suppressed by cooling cells to 4 degrees C to slow biochemical remodeling. Thus, cells use multiple mechanisms to sense and respond to static and dynamic changes in the level of mechanical stress applied to integrins.
引用
收藏
页码:508 / 518
页数:11
相关论文
共 79 条
[1]   Global cytoskeletal control of mechanotransduction in kidney epithelial cells [J].
Alenghat, FJ ;
Nauli, SM ;
Kolb, R ;
Zhou, J ;
Ingber, DE .
EXPERIMENTAL CELL RESEARCH, 2004, 301 (01) :23-30
[2]   Analysis of cell mechanics in single vinculin-deficient cells using a magnetic tweezer [J].
Alenghat, FJ ;
Fabry, B ;
Tsai, KY ;
Goldmann, WH ;
Ingber, DE .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2000, 277 (01) :93-99
[3]   Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates [J].
Balaban, NQ ;
Schwarz, US ;
Riveline, D ;
Goichberg, P ;
Tzur, G ;
Sabanay, I ;
Mahalu, D ;
Safran, S ;
Bershadsky, A ;
Addadi, L ;
Geiger, B .
NATURE CELL BIOLOGY, 2001, 3 (05) :466-472
[4]   Rapid stiffening of integrin receptor-actin linkages in endothelial cells stimulated with thrombin: A magnetic bead microrheology study [J].
Bausch, AR ;
Hellerer, U ;
Essler, M ;
Aepfelbacher, M ;
Sackmann, E .
BIOPHYSICAL JOURNAL, 2001, 80 (06) :2649-2657
[5]   Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry [J].
Bausch, AR ;
Ziemann, F ;
Boulbitch, AA ;
Jacobson, K ;
Sackmann, E .
BIOPHYSICAL JOURNAL, 1998, 75 (04) :2038-2049
[6]   Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts [J].
Beningo, KA ;
Dembo, M ;
Kaverina, I ;
Small, JV ;
Wang, YL .
JOURNAL OF CELL BIOLOGY, 2001, 153 (04) :881-887
[7]  
Bohmer RM, 1996, MOL BIOL CELL, V7, P101
[8]   Geometric control of cell life and death [J].
Chen, CS ;
Mrksich, M ;
Huang, S ;
Whitesides, GM ;
Ingber, DE .
SCIENCE, 1997, 276 (5317) :1425-1428
[9]   Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages [J].
Choquet, D ;
Felsenfeld, DP ;
Sheetz, MP .
CELL, 1997, 88 (01) :39-48
[10]   Rho-stimulated contractility drives the formation of stress fibers and focal adhesions [J].
ChrzanowskaWodnicka, M ;
Burridge, K .
JOURNAL OF CELL BIOLOGY, 1996, 133 (06) :1403-1415