When epithelial cells first encounter cholera toxin (Ctx) produced by Vibrio cholerae they secrete not only chloride ions responsible for causing diarrhoea, but also a number of cytokines that may contribute to the toxin's potent immunomodulatory properties. Much less is known about the ability of the heat-labile enterotoxin of Escherichia coli (Etx), a close homologue of Ctx, to elicit cytokine secretion by epithelial cells. This study shows that treatment of human intestinal epithelial T84 cells with Etx induces expression of IL-6, IL-10, IL-1R antagonist, as well as IL-1alpha and IL-1beta and low levels of IL-8. Such induction was totally dependent on the intrinsic ADP-ribosylating activity of the toxin A-subunit, and could be mimicked by cAMP-elevating agents, such as forskolin and dibutyryl cAMP. By comparison, neither an enzymically inactive mutant of Etx nor EtxB was able to induce cytokine secretion. The behaviour of Ctx and CtxB was very similar to that of Etx and EtxB, respectively. The spectrum of cytokines released by Etx and Ctx indicates that the toxins may create a local microenvironment that strongly biases the immune response towards an anti-inflammatory and a polarized Th2 response.