Screened Poisson Surface Reconstruction

被引:1473
作者
Kazhdan, Michael [1 ]
Hoppe, Hugues [1 ]
机构
[1] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21218 USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2013年 / 32卷 / 03期
基金
美国国家科学基金会;
关键词
Algorithms; Performance; Screened Poisson equation; adaptive octree; finite elements; surface fitting; ROBUST;
D O I
10.1145/2487228.2487237
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Poisson surface reconstruction creates watertight surfaces from oriented point sets. In this work we extend the technique to explicitly incorporate the points as interpolation constraints. The extension can be interpreted as a generalization of the underlying mathematical framework to a screened Poisson equation. In contrast to other image and geometry processing techniques, the screening term is defined over a sparse set of points rather than over the full domain. We show that these sparse constraints can nonetheless be integrated efficiently. Because the modified linear system retains the same finite-element discretization, the sparsity structure is unchanged, and the system can still be solved using a multigrid approach. Moreover we present several algorithmic improvements that together reduce the time complexity of the solver to linear in the number of points, thereby enabling faster, higher-quality surface reconstructions.
引用
收藏
页数:13
相关论文
共 31 条
  • [1] Alliez Pierre, 2007, P 5 07, V7, P39, DOI DOI 10.2312/SGP/SGP07/039-048(VERP.39
  • [2] Amenta N., 2001, 6 ACM S SOLID MODELI, P249
  • [3] [Anonymous], 1984, COMPUTATIONAL GALERK, DOI DOI 10.1007/978-3-642-85949-6
  • [4] [Anonymous], UUSCI2011001
  • [5] Bajaj C. L., 1995, Computer Graphics Proceedings. SIGGRAPH 95, P109, DOI 10.1145/218380.218424
  • [6] Bhat P, 2008, LECT NOTES COMPUT SC, V5303, P114, DOI 10.1007/978-3-540-88688-4_9
  • [7] Provably good sampling and meshing of surfaces
    Boissonnat, JD
    Oudot, S
    [J]. GRAPHICAL MODELS, 2005, 67 (05) : 405 - 451
  • [8] Bolitho M., 2007, Symposium on Geometry Processing (SGP), P69
  • [9] SSD: Smooth Signed Distance Surface Reconstruction
    Calakli, F.
    Taubin, G.
    [J]. COMPUTER GRAPHICS FORUM, 2011, 30 (07) : 1993 - 2002
  • [10] Carr JC, 2001, COMP GRAPH, P67, DOI 10.1145/383259.383266