Processing and characterization of epoxy nanocomposites reinforced by cup-stacked carbon nanotubes

被引:67
作者
Choi, YK
Gotoh, Y
Sugimoto, KI
Song, SM
Yanagisawa, T
Endo, M
机构
[1] Shinshu Univ, Fac Engn, Nagano 3808553, Japan
[2] Shinshu Univ, Fac Text Sci & Technol, Ueda, Nagano 3868567, Japan
[3] GSI Creos Corp, Kawasaki, Kanagawa 2100855, Japan
关键词
nanocomposite; polymer; cup-stacked carbon nanotubes;
D O I
10.1016/j.polymer.2005.10.028
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The effect of the dispersion, ozone treatment and concentration of cup-stacked carbon nanotubes on mechanical, electrical and thermal properties of the epoxy/CSCNT nanocomposites were investigated. Ozone treatment of carbon fibers was found to increase the surface oxygen concentration, thereby causing the contact angle between water, epoxy resin and carbon fiber to be decreased. Thus, the tensile strength, modulus and the coefficient friction of carbon fiber reinforced epoxy resin were improved. Moreover, the dispersion of fibers in polymer was increased and the electrical resistivity was decreased with the addition of filler content. The dynamic mechanical behavior of the nanocomposite sheets was studied. The storage modulus of the polymer was increased by the incorporation of CSCNTs. But the glass transition temperature decreased with increasing fiber loading for the ozone treated fiber composites. The ozone treatment did affect the morphology, mechanical and physical properties of the CSCNT. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:11489 / 11498
页数:10
相关论文
共 39 条
[1]  
Ajayan PM, 2000, ADV MATER, V12, P750, DOI 10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO
[2]  
2-6
[3]   Continuous production of aligned carbon nanotubes: a step closer to commercial realization [J].
Andrews, R ;
Jacques, D ;
Rao, AM ;
Derbyshire, F ;
Qian, D ;
Fan, X ;
Dickey, EC ;
Chen, J .
CHEMICAL PHYSICS LETTERS, 1999, 303 (5-6) :467-474
[4]   CARBON FORMATION ON IRON AND NICKEL FOILS BY HYDROCARBON PYROLYSIS - REACTIONS AT 700DEGREESC [J].
BAIRD, T ;
FRYER, JR ;
GRANT, B .
CARBON, 1974, 12 (05) :591-602
[5]   UNIQUE FORM OF FILAMENTOUS CARBON [J].
BAKER, RTK ;
HARRIS, PS ;
TERRY, S .
NATURE, 1975, 253 (5486) :37-39
[6]  
BOCHM HP, 1973, CARBON, V11, P583
[7]   Big returns from small fibers: A review of polymer/carbon nanotube composites [J].
Breuer, O ;
Sundararaj, U .
POLYMER COMPOSITES, 2004, 25 (06) :630-645
[8]  
CHELLAPPA V, 1994, P 26 INT SAMPE TECH, P112
[9]   Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix [J].
Cooper, CA ;
Ravich, D ;
Lips, D ;
Mayer, J ;
Wagner, HD .
COMPOSITES SCIENCE AND TECHNOLOGY, 2002, 62 (7-8) :1105-1112
[10]   Elastic properties of single-walled carbon nanotubes in compression [J].
Cornwell, CF ;
Wille, LT .
SOLID STATE COMMUNICATIONS, 1997, 101 (08) :555-558