Projective lifts and generalised Ermakov and Bernoulli systems

被引:8
作者
Athorne, C [1 ]
机构
[1] Univ Glasgow, Dept Math, Glasgow, Lanark, Scotland
关键词
D O I
10.1006/jmaa.1999.6305
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss a system which generalizes the Bernoulli equation analogously to the way Rogers and Schief generalize the Ermakov system and set both in a geometrical context. (C) 1999 Academic Press.
引用
收藏
页码:552 / 563
页数:12
相关论文
共 11 条
[1]   ON GENERALIZED ERMAKOV SYSTEMS [J].
ATHORNE, C .
PHYSICS LETTERS A, 1991, 159 (8-9) :375-378
[2]  
ATHORNE C, 1997, J PHYS A, V30, P4369
[3]  
ATHORNE C, 1991, PHYS LETT A, V158, P102
[4]  
Bianchi L., 1918, LEZIONI TEORIA GRUPP
[5]  
ERMAKOV VP, 1980, U IZV KIEV 3, V9, P1, DOI doi:10.2298/AADM0802123E
[6]   GENERALIZED ERMAKOV SYSTEMS [J].
LEACH, PGL .
PHYSICS LETTERS A, 1991, 158 (3-4) :102-106
[7]  
Lie S., 1891, VORLESUNGEN DIFFERNT
[8]  
Olver P.G., 1985, Applications of Lie Groups to Differential Equations
[9]   ERMAKOV SYSTEMS, NON-LINEAR SUPERPOSITION, AND SOLUTIONS OF NON-LINEAR EQUATIONS OF MOTION [J].
REID, JL ;
RAY, JR .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (07) :1583-1587
[10]   Multi-component Ermakov systems: Structure and linearization [J].
Rogers, C ;
Schief, WK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 198 (01) :194-220