Simple proof of fault tolerance in the graph-state model

被引:33
作者
Aliferis, P [1 ]
Leung, DW
机构
[1] CALTECH, Inst Quantum Informat, Pasadena, CA 91125 USA
[2] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
来源
PHYSICAL REVIEW A | 2006年 / 73卷 / 03期
关键词
D O I
10.1103/PhysRevA.73.032308
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider the problem of fault tolerance in the graph-state model of quantum computation. Using the notion of composable simulations, we provide a simple proof for the existence of an accuracy threshold for graph-state computation by invoking the threshold theorem derived for quantum circuit computation. Lower bounds for the threshold in the graph-state model are then obtained from known bounds in the circuit model under the same noise process.
引用
收藏
页数:6
相关论文
共 25 条
[1]  
AHARONOV D, QUANTPH9611028
[2]  
Aharonov D., 1998, P 29 ANN ACM S THEOR, P176
[3]  
Aliferis P, 2006, QUANTUM INF COMPUT, V6, P97
[4]   Computation by measurements: A unifying picture [J].
Aliferis, P ;
Leung, DW .
PHYSICAL REVIEW A, 2004, 70 (06) :062314-1
[5]   Resource-efficient linear optical quantum computation [J].
Browne, DE ;
Rudolph, T .
PHYSICAL REVIEW LETTERS, 2005, 95 (01)
[6]   Unified derivations of measurement-based schemes for quantum computation [J].
Childs, AM ;
Leung, DW ;
Nielsen, MA .
PHYSICAL REVIEW A, 2005, 71 (03)
[7]   Noise thresholds for optical quantum computers [J].
Dawson, CM ;
Haselgrove, HL ;
Nielsen, MA .
PHYSICAL REVIEW LETTERS, 2006, 96 (02)
[8]  
JORRAND P, QUANTPH0404125
[9]  
JOZSA R, QUANTPH0508124, P63405
[10]  
Kitaev AY, 1997, QUANTUM COMMUNICATION, COMPUTING, AND MEASUREMENT, P181