Analysis of gene expression in Escherichia coli in response to changes of growth-limiting nutrient in chemostat cultures

被引:142
作者
Hua, Q
Yang, C
Oshima, T
Mori, H
Shimizu, K [1 ]
机构
[1] Kyushu Inst Technol, Dept Biochem Engn & Sci, Iizuka, Fukuoka 8208502, Japan
[2] Keio Univ, Inst Adv Biosci, Tsuruoka 9970017, Japan
[3] Nara Inst Sci & Technol, Res & Educ Ctr Genet Informat, Nara 6300101, Japan
关键词
D O I
10.1128/AEM.70.4.2354-2366.2004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Studies of steady-state metabolic fluxes in Escherichia coli grown in nutrient-limited chemostat cultures suggest remarkable flux alterations in response to changes of growth-limiting nutrient in the medium (Hua et al., J. Bacteriol. 185:7053-7067, 2003). To elucidate the physiological adaptation of cells to the nutrient condition through the flux change and understand the molecular mechanisms underlying the change in the flux, information on gene expression is of great importance. DNA microarray analysis was performed to investigate the global transcriptional responses of steady-state cells grown in chemostat cultures with limited glucose or ammonia while other environmental conditions and the growth rate were kept constant. In slow-growing cells (specific growth rate of 0.10 h(-1)), 9.8% of a total of 4,071 genes investigated, especially those involved in amino acid metabolism, central carbon and energy metabolism, transport system and cell envelope, were observed to be differentially expressed between the two nutrient-limited cultures. One important characteristic of E. coli grown under nutrient limitation was its capacity to scavenge carbon or nitrogen from the medium through elevating the expression of the corresponding transport and assimilation genes. The number of differentially expressed genes in faster-growing cells (specific growth rate of 0.55 h-1), however, decreased to below half of that in slow-growing cells, which could be explained by diverse transcriptional responses to the growth rate under different nutrient limitations. Independent of the growth rate, 92 genes were identified as being differentially expressed. Genes tightly related to the culture conditions were highlighted, some of which may be used to characterize nutrient-limited growth.
引用
收藏
页码:2354 / 2366
页数:13
相关论文
共 39 条
[1]  
AIBA H, 1985, J BIOL CHEM, V260, P3063
[2]   PII signal transduction proteins, pivotal players in microbial nitrogen control [J].
Arcondéguy, T ;
Jack, R ;
Merrick, M .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2001, 65 (01) :80-+
[3]   Role of the GlnK signal transduction protein in the regulation of nitrogen assimilation in Escherichia coli [J].
Atkinson, MR ;
Ninfa, AJ .
MOLECULAR MICROBIOLOGY, 1998, 29 (02) :431-447
[4]   Characterization of the GlnK protein of Escherichia coli [J].
Atkinson, MR ;
Ninfa, AJ .
MOLECULAR MICROBIOLOGY, 1999, 32 (02) :301-313
[5]   The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur [J].
Boer, VM ;
de Winde, JH ;
Pronk, JT ;
Piper, MDW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (05) :3265-3274
[6]   Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli [J].
Chang, YY ;
Cronan, JE .
MOLECULAR MICROBIOLOGY, 1999, 33 (02) :249-259
[7]   Dynamic modeling of the central carbon metabolism of Escherichia coli [J].
Chassagnole, C ;
Noisommit-Rizzi, N ;
Schmid, JW ;
Mauch, K ;
Reuss, M .
BIOTECHNOLOGY AND BIOENGINEERING, 2002, 79 (01) :53-73
[8]  
CRONAN JE, 1996, ESCHERICHIA COLI SAL, P612
[9]   Bacillus subtilis metabolism and energetics in carbon-limited and excess-carbon chemostat culture [J].
Dauner, M ;
Storni, T ;
Sauer, U .
JOURNAL OF BACTERIOLOGY, 2001, 183 (24) :7308-7317
[10]   BETWEEN FEAST AND FAMINE - ENDOGENOUS INDUCER SYNTHESIS IN THE ADAPTATION OF ESCHERICHIA-COLI TO GROWTH WITH LIMITING CARBOHYDRATES [J].
DEATH, A ;
FERENCI, T .
JOURNAL OF BACTERIOLOGY, 1994, 176 (16) :5101-5107