Unexpected patterns of sensitivity to drought in three semi-arid grasslands

被引:133
作者
Cherwin, Karie [1 ]
Knapp, Alan [1 ,2 ]
机构
[1] Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA
[2] Colorado State Univ, Grad Degree Program Ecol, Ft Collins, CO 80523 USA
关键词
Climate change; Rain event size; Precipitation patterns; Shortgrass steppe; Aboveground annual net primary productivity (ANPP); NET PRIMARY PRODUCTIVITY; DYNAMICS; REGIMES; DESIGN; BIOMES;
D O I
10.1007/s00442-011-2235-2
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Global climate models forecast an increase in the frequency and intensity of extreme weather events, including severe droughts. Based on multi-year relationships between precipitation amount and aboveground annual net primary production (ANPP), semi-arid grasslands are projected to be among the most sensitive ecosystems to changes in precipitation. To assess sensitivity to drought, as well as variability within the shortgrass steppe biome, we imposed moderate and severe rainfall reductions for two growing seasons in three undisturbed grasslands that varied in soil type and climate. We predicted strong drought-induced reductions in ANPP at all sites and greater sensitivity to drought in sites with lower average precipitation, consistent with continental-scale patterns. Identical experimental infrastructure at each site reduced growing season rainfall events by 50 or 80%, and significantly reduced average soil moisture in both years (by 21 and 46% of control levels, respectively). Despite reductions in soil moisture, ANPP responses varied unexpectedly-from no reduction in ANPP to a 51% decrease. Although sensitivity to drought was highest in the semi-arid grassland with lowest mean annual precipitation, patterns in responses to drought across these grasslands were also strongly related to rainfall event size. When growing season rainfall patterns were dominated by many smaller events, ANPP was significantly reduced by drought but not when rainfall patterns were characterized by large rain events. This interaction between drought sensitivity and rainfall event size suggests that ANPP responses to future droughts may be reduced if growing season rainfall regimes also become more extreme.
引用
收藏
页码:845 / 852
页数:8
相关论文
共 30 条
[1]   FIRE FREQUENCY AND COMMUNITY HETEROGENEITY IN TALLGRASS PRAIRIE VEGETATION [J].
COLLINS, SL .
ECOLOGY, 1992, 73 (06) :2001-2006
[2]  
DAUBENMIRE R., 1959, NORTHWEST SCI, V33, P43
[3]   Altering rainfall timing and quantity in a mesic grassland ecosystem: Design and performance of rainfall manipulation shelters [J].
Fay, PA ;
Carlisle, JD ;
Knapp, AK ;
Blair, JM ;
Collins, SL .
ECOSYSTEMS, 2000, 3 (03) :308-319
[4]   Response of temperate grasslands at different altitudes to simulated summer drought differed but scaled with annual precipitation [J].
Gilgen, A. K. ;
Buchmann, N. .
BIOGEOSCIENCES, 2009, 6 (11) :2525-2539
[5]  
Gill R, 1999, ECOSYSTEMS, V2, P226
[6]  
Hanson P.J., 2003, North American temperate deciduous forest responses to changing precipitation regimes, P421
[7]   Temporal coherence of aboveground net primary productivity in mesic grasslands [J].
Heisler, Jana L. ;
Knapp, Alan K. .
ECOGRAPHY, 2008, 31 (03) :408-416
[8]   Increasing precipitation event size increases aboveground net primary productivity in a semi-arid grassland [J].
Heisler-White, Jana L. ;
Knapp, Alan K. ;
Kelly, Eugene F. .
OECOLOGIA, 2008, 158 (01) :129-140
[9]   Contingent productivity responses to more extreme rainfall regimes across a grassland biome [J].
Heisler-White, Jana L. ;
Blair, John M. ;
Kelly, Eugene F. ;
Harmoney, Keith ;
Knapp, Alan K. .
GLOBAL CHANGE BIOLOGY, 2009, 15 (12) :2894-2904
[10]   Convergence across biomes to a common rain-use efficiency [J].
Huxman, TE ;
Smith, MD ;
Fay, PA ;
Knapp, AK ;
Shaw, MR ;
Loik, ME ;
Smith, SD ;
Tissue, DT ;
Zak, JC ;
Weltzin, JF ;
Pockman, WT ;
Sala, OE ;
Haddad, BM ;
Harte, J ;
Koch, GW ;
Schwinning, S ;
Small, EE ;
Williams, DG .
NATURE, 2004, 429 (6992) :651-654