Ion transport restriction in mechanically strained separator membranes

被引:129
作者
Cannarella, John [1 ]
Arnold, Craig B. [1 ]
机构
[1] Princeton Univ, Dept Mech & Aerosp Engn, Princeton, NJ 08544 USA
关键词
Lithium-ion battery; Mechanical stress; Separator; Power fade; Capacity fade; Tortuosity; INDUCED STRESS; LITHIUM; EVOLUTION; FRACTURE; CELLS;
D O I
10.1016/j.jpowsour.2012.10.093
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We use AC impedance methods to investigate the effect of mechanical deformation on ion transport in commercial separator membranes and lithium-ion cells as a whole. A Bruggeman type power law relationship is found to provide an accurate correlation between porosity and tortuosity of deformed separators, which allows the impedance of a separator membrane to be predicted as a function of deformation. By using mechanical compression to vary the porosity of the separator membranes during impedance measurements it is possible to determine both the alpha and gamma parameters from the modified Bruggeman relation for individual separator membranes. From impedance testing of compressed pouch cells it is found that separator deformation accounts for the majority of the transport restrictions arising from compressive stress in a lithium-ion cell. Finally, a charge state dependent increase in the impedance associated with charge transfer is observed with increasing cell compression. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:149 / 155
页数:7
相关论文
共 26 条
[1]   Battery separators [J].
Arora, P ;
Zhang, ZM .
CHEMICAL REVIEWS, 2004, 104 (10) :4419-4462
[2]   Quantifying the effects of strains on the conductivity and porosity of LiFePO4 based Li-ion composite cathodes using a multi-scale approach [J].
Awarke, Ali ;
Lauer, Sven ;
Wittler, Michael ;
Pischinger, Stefan .
COMPUTATIONAL MATERIALS SCIENCE, 2011, 50 (03) :871-879
[3]  
Barsoukov E, 2005, IMPEDANCE SPECTROSCOPY: THEORY, EXPERIMENT, AND APPLICATIONS, 2ND EDITION, pXII
[4]   ALL-SOLID LITHIUM ELECTRODES WITH MIXED-CONDUCTOR MATRIX [J].
BOUKAMP, BA ;
LESH, GC ;
HUGGINS, RA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1981, 128 (04) :725-729
[5]   Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation [J].
Cheng, Yang-Tse ;
Verbrugge, Mark W. .
JOURNAL OF POWER SOURCES, 2009, 190 (02) :453-460
[6]   Lithium rechargeable batteries as electromechanical actuators [J].
Chin, TE ;
Rhyner, U ;
Koyama, Y ;
Hall, SR ;
Chiang, YM .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (03) :A134-A138
[7]   Stress generation and fracture in lithium insertion materials [J].
Christensen, J ;
Newman, J .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2006, 10 (05) :293-319
[8]   Modeling Diffusion-Induced Stress in Li-Ion Cells with Porous Electrodes [J].
Christensen, Jake .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (03) :A366-A380
[9]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[10]   Numerical modeling of electrochemical-mechanical interactions in lithium polymer batteries [J].
Golmon, Stephanie ;
Maute, Kurt ;
Dunn, Martin L. .
COMPUTERS & STRUCTURES, 2009, 87 (23-24) :1567-1579