In vivo dissection of the tat translocation pathway in Escherichia coli

被引:81
作者
Ize, B
Gérard, F
Zhang, M
Chanal, A
Voulhoux, R
Palmer, T
Filloux, A
Wu, LF
机构
[1] CNRS, Inst Biol Struct & Microbiol, UPR 9043, Chim Bacterienne Lab, F-13402 Marseille 20, France
[2] CNRS, Inst Biol Struct & Microbiol, UPR 9027, Lab Ingn Syst Macromol, F-13402 Marseille 20, France
[3] John Innes Ctr, Dept Mol Microbiol, Norwich NR4 7UH, Norfolk, England
[4] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China
关键词
twin arginine; Tat component; GFP; colicin V; in vivo probes;
D O I
10.1006/jmbi.2002.5431
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The bacterial Tat pathway is capable of exporting folded proteins carrying a special twin arginine (RR) signal peptide. By using two in vivo reporter proteins, we assessed factors that affect Tat pathway transport. We observed that, like the intact RR signal peptide, those with a KR or RK substitution were still capable of mediating the translocation of the folded green fluorescent protein (GFP). However, the translocation efficiency decreased in the order of RR > KR > RK. The KK motif was unable to mediate GFP translocation. The translocation of the RR-GFP fusion required TatA, TatB and TatC proteins. By exploiting the periplasmic bactericidal property of colicin V (ColV), we constructed a translocation-suicide probe, RR-ColV. The translocation of RR-ColV fully inhibited the growth of wild-type Escherichia coli and those of the DeltatatD and DeltatatE mutants. In contrast, the deletion of the tatC gene blocked RR-ColV in the cytoplasm and this strain exhibited a normal growth phenotype. Interestingly, the growth of DeltatatA and tatB mutants was inhibited partially by RR-ColV. Moreover, KR, RK and KK motifs were capable of mediating the ColV translocation with a decreasing RR = KR > RK > KK efficiency. In addition to TatE and TatC proteins, either TatA or TatB was sufficient for the translocation of RR-ColV or KR-ColV. In contrast, TatA plus the conserved N-terminal domain of TatB were required to mediate the killing effect of ColV fused to the less-efficient RK signal peptide. Taken together, these results suggest that a fully efficient Tat pathway transport is determined by the sequence of the signal peptide, the composition of the Tat apparatus, and the intrinsic characteristics of exported proteins. (C) 2002 Elsevier Science Ltd.
引用
收藏
页码:327 / 335
页数:9
相关论文
共 44 条
[1]   Export of Thermus thermophilus alkaline phosphatase via the twin-arginine translocation pathway in Escherichia coli [J].
Angelini, S ;
Moreno, R ;
Gouffi, K ;
Santini, CL ;
Yamagishi, A ;
Berenguer, J ;
Wu, LF .
FEBS LETTERS, 2001, 506 (02) :103-107
[2]   The Tat protein export pathway [J].
Berks, BC ;
Sargent, F ;
Palmer, T .
MOLECULAR MICROBIOLOGY, 2000, 35 (02) :260-274
[3]   Ralstonia eutropha TF93 is blocked in tat-mediated protein export [J].
Bernhard, M ;
Friedrich, B ;
Siddiqui, RA .
JOURNAL OF BACTERIOLOGY, 2000, 182 (03) :581-588
[4]   Pathway specificity for a Delta pH-dependent precursor thylakoid lumen protein is governed by a 'Sec-avoidance' motif in the transfer peptide and a 'Sec-incompatible' mature protein [J].
Bogsch, E ;
Brink, S ;
Robinson, C .
EMBO JOURNAL, 1997, 16 (13) :3851-3859
[5]   An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria [J].
Bogsch, EG ;
Sargent, F ;
Stanley, NR ;
Berks, BC ;
Robinson, C ;
Palmer, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (29) :18003-18006
[6]   TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli [J].
Bolhuis, A ;
Mathers, JE ;
Thomas, JD ;
Barrett, CML ;
Robinson, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (23) :20213-20219
[7]   Subunit interactions in the twin-arginine translocase complex of Escherichia coli [J].
Bolhuis, A ;
Bogsch, EG ;
Robinson, C .
FEBS LETTERS, 2000, 472 (01) :88-92
[8]  
Brüser T, 1998, FEMS MICROBIOL LETT, V164, P329
[9]   Potential receptor function of three homologous components, TatA, TatB and TatE, of the twin-arginine signal sequence-dependent metalloenzyme translocation pathway in Escherichia coli [J].
Chanal, A ;
Santini, CL ;
Wu, LF .
MOLECULAR MICROBIOLOGY, 1998, 30 (03) :674-676
[10]   Competition between Sec- and TAT-dependent protein translocation in Escherichia coli [J].
Cristóbal, S ;
de Gier, JW ;
Nielsen, H ;
von Heijne, G .
EMBO JOURNAL, 1999, 18 (11) :2982-2990