Mutants of glucokinase cause hypoglycaemia- and hyperglycaemia syndromes and their analysis illuminates fundamental quantitative concepts of glucose homeostasis

被引:123
作者
Davis, EA
Cuesta-Muñoz, A
Raoul, M
Buettger, C
Sweet, I
Moates, M
Magnuson, MA
Matschinsky, FM
机构
[1] Univ Penn, Sch Med, Diabet Res Ctr, Philadelphia, PA 19104 USA
[2] Univ Penn, Sch Med, Dept Biochem & Biophys, Philadelphia, PA 19104 USA
[3] Vanderbilt Univ, Sch Med, Dept Mol Physiol & Biophys, Nashville, TN 37212 USA
关键词
MODY-2; glucokinase; glucose threshold; insulin secretion; beta-cell; mathematical model;
D O I
10.1007/s001250051289
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims/hypothesis. Mutations of the glucokinase gene cause hyperglycaemia or hypoglycaemia. A quantitative understanding of these defects of glucose homeostasis linked to the glucokinase gene was lacking. Therefore a database of kinetic variables of wild-type and 20 missense mutants of glucokinase was developed and used in mathematical modelling to predict the thresholds for glucose-stimulated insulin release. Methods. Recombinant human glucokinase was generated in E. coli. The k(cat), glucose S-0.5, ATP K-m, and Hill number of glucokinase were determined. Inhibition by Stearoyl CoA and glucokinase regulatory protein and thermal stability were assayed for all mutants kinetically similar to wild-type glucokinase. A mathematical model predicting the threshold for glucose-stimulated insulin release was constructed. This model is based on the two substrate kinetics of glucokinase and the kinetic variables of the database. It is assumed that both glucokinase gene alleles are equally expressed in beta-cells and that induction of glucokinase occurs as a function of basal blood glucose. Results. Large changes, varying greatly between mutants were found in nearly all variables. Glucokinase flux at threshold for glucose-stimulated insulin release was about 25% of total phosphorylating potential in the normal beta-cell and this was used to predict thresholds for the mutant heterozygotes. Clinical data for maturity onset diabetes of the young type linked to the glucokinase gene and familial hyperinsulinaemic hypoglycaemia linked to the glucokinase gene and the glucokinase kinetic data of this study were used to test the model. The model predicts fasting blood glucose between 3 and 7 mmol/l in these cases. Conclusion/interpretation. A kinetics database of wild-type and 20 mutants of glucokinase was developed. Many kinetic differences were found for the mutants. The mathematical model to calculate the threshold for glucose-stimulated insulin release predicts fasting blood glucose between 3 and 7 mmol/l in subjects with glucokinase gene mutations.
引用
收藏
页码:1175 / 1186
页数:12
相关论文
共 40 条
[1]   THE GLUCOKINASE GLUCOSE SENSOR IN HUMAN PANCREATIC-ISLET TISSUE [J].
BEDOYA, FJ ;
WILSON, JM ;
GHOSH, AK ;
FINEGOLD, D ;
MATSCHINSKY, FM .
DIABETES, 1986, 35 (01) :61-67
[2]  
BHUVANESHWARI M, 1999, IN PRESS DIABETES
[3]  
BURKE CV, 1999, IN PRESS BIOCH J
[4]   INSULIN SECRETORY ABNORMALITIES IN SUBJECTS WITH HYPERGLYCEMIA DUE TO GLUCOKINASE MUTATIONS [J].
BYRNE, MM ;
STURIS, J ;
CLEMENT, K ;
VIONNET, N ;
PUEYO, ME ;
STOFFEL, L ;
TAKEDA, J ;
PASSA, P ;
COHEN, D ;
BELL, GI ;
VELHO, G ;
FROGUEL, P ;
POLONSKY, KS .
JOURNAL OF CLINICAL INVESTIGATION, 1994, 93 (03) :1120-1130
[5]  
CARDENAS ML, 1995, GLUCOKINASE ITS REGU, P41
[6]   MOLECULAR-MODEL OF HUMAN BETA-CELL GLUCOKINASE BUILT BY ANALOGY TO THE CRYSTAL-STRUCTURE OF YEAST HEXOKINASE-B [J].
CHARLES, RS ;
HARRISON, RW ;
BELL, GL ;
PILKIS, SJ ;
WEBER, IT .
DIABETES, 1994, 43 (06) :784-791
[7]   RIBOZYME-MEDIATED ATTENUATION OF PANCREATIC BETA-CELL GLUCOKINASE EXPRESSION IN TRANSGENIC MICE RESULTS IN IMPAIRED GLUCOSE-INDUCED INSULIN-SECRETION [J].
EFRAT, S ;
LEISER, M ;
WU, YJ ;
FUSCODEMANE, D ;
EMRAN, OA ;
SURANA, M ;
JETTON, TL ;
MAGNUSON, MA ;
WEIR, G ;
FLEISCHER, N .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (06) :2051-2055
[8]   CLOSE LINKAGE OF GLUCOKINASE LOCUS ON CHROMOSOME-7P TO EARLY-ONSET NON-INSULIN-DEPENDENT DIABETES-MELLITUS [J].
FROGUEL, P ;
VAXILLAIRE, M ;
SUN, F ;
VELHO, G ;
ZOUALI, H ;
BUTEL, MO ;
LESAGE, S ;
VIONNET, N ;
CLEMENT, K ;
FOUGEROUSSE, F ;
TANIZAWA, Y ;
WEISSENBACH, J ;
BECKMANN, JS ;
LATHROP, GM ;
PASSA, P ;
PERMUTT, MA ;
COHEN, D .
NATURE, 1992, 356 (6365) :162-164
[9]   FAMILIAL HYPERGLYCEMIA DUE TO MUTATIONS IN GLUCOKINASE - DEFINITION OF A SUBTYPE OF DIABETES-MELLITUS [J].
FROGUEL, P ;
ZOUALI, H ;
VIONNET, N ;
VELHO, G ;
VAXILLAIRE, M ;
SUN, F ;
LESAGE, S ;
STOFFEL, M ;
TAKEDA, J ;
PASSA, P ;
PERMUTT, MA ;
BECKMANN, JS ;
BELL, GI ;
COHEN, D .
NEW ENGLAND JOURNAL OF MEDICINE, 1993, 328 (10) :697-702
[10]   GLUCOKINASE MUTATIONS ASSOCIATED WITH NON-INSULIN-DEPENDENT (TYPE-2) DIABETES-MELLITUS HAVE DECREASED ENZYMATIC-ACTIVITY - IMPLICATIONS FOR STRUCTURE-FUNCTION-RELATIONSHIPS [J].
GIDHJAIN, M ;
TAKEDA, J ;
XU, LZ ;
LANGE, AJ ;
VIONNET, N ;
STOFFEL, M ;
FROGUEL, P ;
VELHO, G ;
SUN, F ;
COHEN, D ;
PATEL, P ;
LO, YMD ;
HATTERSLEY, AT ;
LUTHMAN, H ;
WEDELL, A ;
STCHARLES, R ;
HARRISON, RW ;
WEBER, IT ;
BELL, GI ;
PILKIS, SJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (05) :1932-1936