Fast pulsed electroluminescence from polymer light-emitting diodes

被引:29
作者
Wang, J [1 ]
Sun, RG [1 ]
Yu, G [1 ]
Heeger, AJ [1 ]
机构
[1] UNIAX Corp, Santa Barbara, CA 93117 USA
关键词
D O I
10.1063/1.1434545
中图分类号
O59 [应用物理学];
学科分类号
摘要
Transient electroluminescence (EL) from polymer light emitting diodes is investigated by measurements of the response to short voltage pulses. The carrier mobility is derived from the delay time between the electrical pulse and the onset of EL, muapproximate to3x10(-4) cm(2)/V s. Bilayer devices with a polyethylene-dioxythiophene (PEDOT), hole injection layer are also studied. The delay time between the electrical pulse and the onset of EL is independent of the thickness of the injection layer, implying that the conducting PEDOT functions as a part of the electrode. When a dc forward bias is applied to the device, the delay time decreases, probably as a result of the shift of the emission zone towards the anode. The EL turn-on depends on the amplitude of the voltage pulse. The data are modeled by an equivalent circuit with a fixed capacitance connected in parallel with a nonlinear resistance. The solution of the differential equation depends on the exact form of the device's I-V curve. Two analytical solutions are provided, and an analysis based on space-charge-limited current is presented. By applying a dc forward bias in advance to precharge the space-charge capacitance, the turn-on response time is reduced to 12 ns. The EL decay consists of two components with time constants of 15 ns and 1 mus. The decay does not depend on either the amplitude of the voltage pulse or the prebias. (C) 2002 American Institute of Physics.
引用
收藏
页码:2417 / 2422
页数:6
相关论文
共 35 条
[1]   Electron mobility in tris(8-hydroxy-quinoline)aluminum thin films determined via transient electroluminescence from single- and multilayer organic light-emitting diodes [J].
Barth, S ;
Müller, P ;
Riel, H ;
Seidler, PF ;
Riess, W ;
Vestweber, H ;
Bässler, H .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (07) :3711-3719
[2]   CHARGE TRANSPORT IN DISORDERED ORGANIC PHOTOCONDUCTORS - A MONTE-CARLO SIMULATION STUDY [J].
BASSLER, H .
PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1993, 175 (01) :15-56
[3]  
Becker H, 2000, ADV MATER, V12, P42, DOI 10.1002/(SICI)1521-4095(200001)12:1<42::AID-ADMA42>3.0.CO
[4]  
2-F
[5]   Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene) [J].
Blom, PWM ;
deJong, MJM ;
vanMunster, MG .
PHYSICAL REVIEW B, 1997, 55 (02) :R656-R659
[6]   Dispersive hole transport in poly(p-phenylene vinylene) [J].
Blom, PWM ;
Vissenberg, MCJM .
PHYSICAL REVIEW LETTERS, 1998, 80 (17) :3819-3822
[7]   Electron and hole transport in poly(p-phenylene vinylene) devices [J].
Blom, PWM ;
deJong, MJM ;
Vleggaar, JJM .
APPLIED PHYSICS LETTERS, 1996, 68 (23) :3308-3310
[8]   NANOSECOND TRANSIENT ELECTROLUMINESCENCE FROM POLYMER LIGHT-EMITTING-DIODES [J].
BRAUN, D ;
MOSES, D ;
ZHANG, C ;
HEEGER, AJ .
APPLIED PHYSICS LETTERS, 1992, 61 (26) :3092-3094
[9]   Bulk limited conduction in electroluminescent polymer devices [J].
Campbell, AJ ;
Weaver, MS ;
Lidzey, DG ;
Bradley, DDC .
JOURNAL OF APPLIED PHYSICS, 1998, 84 (12) :6737-6746
[10]   Device model for single carrier organic diodes [J].
Davids, PS ;
Campbell, IH ;
Smith, DL .
JOURNAL OF APPLIED PHYSICS, 1997, 82 (12) :6319-6325