Volcanic particle aggregation in explosive eruption columns. Part II: Numerical experiments

被引:56
作者
Textor, C
Graf, HF
Herzog, M
Oberhuber, JM
Rose, WI
Ernst, GGJ
机构
[1] Max Planck Inst Meteorol, Hamburg, Germany
[2] Deutsch Klimarechenzentrum GMBH, Hamburg, Germany
[3] Michigan Technol Univ, Dept Geol Engn & Sci, Houghton, MI 49931 USA
[4] Univ Bristol, Dept Earth Sci, Bristol BS8 1TH, Avon, England
关键词
ash particle aggregation; cloud microphysics; numerical simulation; volcanic eruption column; hydrometeors; gas particle separation;
D O I
10.1016/j.jvolgeores.2005.09.008
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The goal of this paper is to determine the parameters that control the aggregation efficiency and the growth rate of volcanic particles within the eruption column. Numerical experiments are performed with the plume model ATHAM (Active Tracer High resolution Atmospheric Model). In this study we employ the parameterizations described in a companion paper (this issue). The presence of hydrometeors promotes the aggregation of ash particles, which strongly increases their fall velocities and thus their environmental impact. The tephra mass is about two orders of magnitude greater than that of hydrometeors during typical Plinian eruptions without interaction of external water. Ice is highly dominant in comparison to liquid water (> 99% by mass). This is caused by the fast column rise (> 100 in s(-1) on average) to very cold altitudes. Most particles occur in the form of frozen aggregates with low ice content. The collection efficiency is governed by the availability of hydrometeors acting as adhesives at the particles' surface in our study, and wet ash particles have a higher sticking capacity than icy ones. Therefore, aggregation is fastest during the eruption within the column when limited regions of liquid water exist and when particle concentrations are very high (of the order of 105 cm(-3)). Increased humidity in the background atmosphere generally leads to enhanced ice formation, but shows only a weak influence on the aggregation process. First sensitivity studies showed, however, a significant increase of the liquid water fraction when considering salinity effects. The availability of water or ice at the particles' surfaces is also governed by the surface properties, the porosity and permeability of ash, which are not well established to date. Particle growth is significantly enhanced for greater differences in the sizes and fall velocities among particles, as gravitational capture becomes more efficient. Our experiments indicate a major influence of the erupted particle size distribution. First sensitivity studies show that electrostatic forces result in a significant enhancement of aggregated particles. The present exploratory study provides new insights into the sensitivity of the ash aggregation process to a number of key parameters. Our results indicate the need of further constraining particle composition, size, porosity, permeability, and surface properties at low temperatures by in situ observations in the laboratory and in the field. In addition further research on electrostatic aggregation would be desirable. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:378 / 394
页数:17
相关论文
共 28 条
[1]   INFLUENCE OF PARTICLE AGGREGATION ON DEPOSITION OF DISTAL TEPHRA FROM THE MAY 18, 1980, ERUPTION OF MOUNT ST-HELENS VOLCANO [J].
CAREY, SN ;
SIGURDSSON, H .
JOURNAL OF GEOPHYSICAL RESEARCH, 1982, 87 (NB8) :7061-7072
[2]  
Faraday M., 1859, PHILOS MAG, V17, P162, DOI DOI 10.1080/14786445908642645
[3]   Transport of atmospheric water vapor by volcanic eruption columns [J].
Glaze, LS ;
Baloga, SM ;
Wilson, L .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D5) :6099-6108
[4]   Sensitivity of buoyant plume heights to ambient atmospheric conditions: Implications for volcanic eruption columns [J].
Glaze, LS ;
Baloga, SM .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D1) :1529-1540
[5]   Effect of environmental conditions on volcanic plume rise [J].
Graf, HF ;
Herzog, M ;
Oberhuber, JM ;
Textor, C .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D20) :24309-24320
[6]  
Herzog M, 2003, J ATMOS SCI, V60, P2783, DOI 10.1175/1520-0469(2003)060<2783:APTSFT>2.0.CO
[7]  
2
[8]   The effect of phase changes of water on the development of volcanic plumes [J].
Herzog, M ;
Graf, HF ;
Textor, C ;
Oberhuber, JM .
JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH, 1998, 87 (1-4) :55-74
[9]   Experiments on gas-ash separation processes in volcanic umbrella plumes [J].
Holasek, RE ;
Woods, AW ;
Self, S .
JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH, 1996, 70 (3-4) :169-181
[10]   ELECTRIC-POTENTIAL GRADIENT CHANGES DURING EXPLOSIVE ACTIVITY AT SAKURAJIMA VOLCANO, JAPAN [J].
LANE, SJ ;
GILBERT, JS .
BULLETIN OF VOLCANOLOGY, 1992, 54 (07) :590-594