Quasi-Newton filtered-error and filtered-regressor algorithms for adaptive equalization and deconvolution

被引:4
作者
Douglas, SC
Cichocki, A
Amari, S
机构
来源
FIRST IEEE SIGNAL PROCESSING WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS | 1997年
关键词
D O I
10.1109/SPAWC.1997.630153
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In equalization and deconvolution tasks, the correlated nature of the input signal slows the convergence speeds of stochastic gradient adaptive filters. In this paper, we present two simple algorithms that employ the equalizer as a prewhitening filter to effectively and iteratively decorrelate the input signal within the gradient updates. These algorithms provide quasi-Newton convergence locally about the optimum coefficient solution for deconvolution and equalization tasks. Simulations indicate that the algorithms have excellent adaptation properties both for supervised and unsupervised (blind) adaptation criteria.
引用
收藏
页码:109 / 112
页数:4
相关论文
empty
未找到相关数据