On the structure of the n=4 supersymmetric quantum mechanics in D=2 and D=3

被引:14
作者
Berezovoj, V [1 ]
Pashnev, A [1 ]
机构
[1] JOINT INST NUCL RES,THEORET PHYS LAB,MOSCOW 101000,RUSSIA
关键词
D O I
10.1088/0264-9381/13/7/003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The superfield formulation of two-dimensional N = 4 extended supersymmetric quantum mechanics (SQM) is described. It is shown that the corresponding classical Lagrangian describes the motion in the conformally flat metric with an additional potential term. The Bose and Fermi sectors of two- and three-dimensional N = 4 SQM are analysed. The structure of the quantum Hamiltonians is such that the usual Schrodinger equation in the flat space arises after some transformation, demonstrating the effect of transmutation of the coupling constant and the energy of the initial model in some special cases.
引用
收藏
页码:1699 / 1706
页数:8
相关论文
共 11 条
[1]   SUPERSYMMETRIC QUANTUM-MECHANICS AND SPONTANEOUS BREAKING OF SUPERSYMMETRY AT THE QUANTUM LEVEL [J].
AKULOV, VP ;
PASHNEV, AI .
THEORETICAL AND MATHEMATICAL PHYSICS, 1985, 65 (01) :1027-1032
[2]   PARTICLE SPIN DYNAMICS AS GRASSMANN VARIANT OF CLASSICAL MECHANICS [J].
BEREZIN, FA ;
MARINOV, MS .
ANNALS OF PHYSICS, 1977, 104 (02) :336-362
[3]   3-DIMENSIONAL N = 4 EXTENDED SUPERSYMMETRIC QUANTUM-MECHANICS [J].
BEREZOVOJ, VP ;
PASHNEV, AI .
CLASSICAL AND QUANTUM GRAVITY, 1991, 8 (12) :2141-2147
[4]  
BEREZOVOJ VP, 1991, 9120 KFTI
[5]   QUANTIZATION OF SYSTEMS WITH ANTI-COMMUTING VARIABLES [J].
CASALBUONI, R .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1976, 33 (01) :115-125
[6]  
CHRISTODOULAKIS T, 1991, PHYS LETT B, V256, P484, DOI 10.1016/0370-2693(91)91791-S
[7]   PARTIAL SUPERSYMMETRY BREAKING IN N = 4 SUPERSYMMETRIC QUANTUM-MECHANICS [J].
IVANOV, EA ;
KRIVONOS, SO ;
PASHNEV, AI .
CLASSICAL AND QUANTUM GRAVITY, 1991, 8 (01) :19-39
[8]   SUPERSYMMETRIC GAUGE QUANTUM-MECHANICS - SUPERFIELD DESCRIPTION [J].
IVANOV, EA ;
SMILGA, AV .
PHYSICS LETTERS B, 1991, 257 (1-2) :79-82
[9]  
KOSTELECKY VA, 1985, PHYS REV D, V32, P2627, DOI [10.1103/physrevd.32.2627, 10.1103/PhysRevD.32.2627]
[10]  
KUSTAANHEIMO P, 1965, J REINE ANGEW MATH, V218, P205