共 25 条
Linear combinations of docking affinities explain quantitative differences in RTK signaling
被引:43
作者:
Gordus, Andrew
[1
]
Krall, Jordan A.
[1
]
Beyer, Elsa M.
[1
]
Kaushansky, Alexis
[1
]
Wolf-Yadlin, Alejandro
[1
]
Sevecka, Mark
[1
]
Chang, Bryan H.
[1
]
Rush, John
[2
]
MacBeath, Gavin
[1
]
机构:
[1] Harvard Univ, Dept Chem & Biol Chem, Cambridge, MA 02138 USA
[2] Cell Signaling Technol Inc, Danvers, MA USA
基金:
美国国家卫生研究院;
关键词:
partial least-squares regression;
protein microarray;
PTB domain;
receptor tyrosine kinase;
SH2;
domain;
RECEPTOR TYROSINE KINASES;
NEURITE OUTGROWTH;
PC12;
CELLS;
ACTIVATION;
PATHWAYS;
GENOME;
DOMAIN;
GENES;
STAT3;
MOTIF;
D O I:
10.1038/msb.2008.72
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Receptor tyrosine kinases (RTKs) process extracellular cues by activating a broad array of signaling proteins. Paradoxically, they often use the same proteins to elicit diverse and even opposing phenotypic responses. Binary, 'on-off' wiring diagrams are therefore inadequate to explain their differences. Here, we show that when six diverse RTKs are placed in the same cellular background, they activate many of the same proteins, but to different quantitative degrees. Additionally, we find that the relative phosphorylation levels of upstream signaling proteins can be accurately predicted using linear models that rely on combinations of receptor-docking affinities and that the docking sites for phosphoinositide 3-kinase (PI3K) and Shc1 provide much of the predictive information. In contrast, we find that the phosphorylation levels of downstream proteins cannot be predicted using linear models. Taken together, these results show that information processing by RTKs can be segmented into discrete upstream and downstream steps, suggesting that the challenging task of constructing mathematical models of RTK signaling can be parsed into separate and more manageable layers.
引用
收藏
页数:10
相关论文