Caspase cleavage product lacking amino-terminus of IκBα sensitizes resistant cells to TNF-α and TRAIL-induced apoptosis

被引:23
作者
Kim, KW [1 ]
Kim, BJ [1 ]
Chung, CW [1 ]
Jo, DG [1 ]
Kim, IK [1 ]
Song, YH [1 ]
Kwon, YK [1 ]
Woo, HN [1 ]
Jung, YK [1 ]
机构
[1] Kwangju Inst Sci & Technol, Dept Life Sci, Puk Gu, Kwangju 500712, South Korea
关键词
I kappa B alpha; apoptosis; caspase; TNF-alpha; TRAIL;
D O I
10.1002/jcb.10139
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In response to a diverse array of signals, IkappaBalpha is targeted for phosphorylation-dependent degradation by the proteasome, thereby activating NF-kappaB. Here we demonstrate a role of the cleavage product of IkappaBalpha in various death signals. During apoptosis of NIH3T3, Jurkat, Rat-1, and L929 cells exposed to tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), Fas, serum deprivation, or TNF-alpha, respectively, IkappaBalpha was cleaved in a caspase-dependent manner. In vitro and in vivo cleavage assays and site-directed mutagenesis showed that caspase-3 cleaved IkappaBalpha between Asp31 and Ser32. Expression of the cleavage product lacking amino-terminus (1-31), DeltaIkappaBalpha, sensitized otherwise resistant NIH3T3 fibroblast cells to apoptosis induced by TNF-alpha or TRAIL, and HeLa tumor cells to TNF-alpha. DeltaIkappaBalpha was more pro-apoptotic compared to wild type or cleavage-resistant (D31E)IkappaBalpha mutant and the sensitization elicited by DeltaIkappaBalpha was as effective as that by the dominant negative mutant, (S32,36A)IkappaBalpha, in NIH3T3 cells. DeltaIkappaBalpha suppressed the transactivation of NF-kappaB induced by TNF-alpha or TRAIL, as reflected by luciferase-reporter activity. Conversely, expression of the p65 subunit of NF-kappaB suppressed TNF-alpha, TRAIL-, and serum deprivation-induced cell death. On the contrary, DeltaIkappaBalpha was less effective at increasing the death rate of HeLa cells that were already sensitive to death signals including TRAIL, etoposide, or taxol. These results suggest that DeltaIkappaBalpha generated by various death signals sensitizes cells to apoptosis by suppressing NF-kappaB activity. J. Cell. Biochem. 85: 334-345, 2002. (C) 2002 Wiley-Liss, Inc.
引用
收藏
页码:334 / 345
页数:12
相关论文
共 57 条
[1]  
Ahmad M, 1998, CANCER RES, V58, P5201
[2]   Human ICE/CED-3 protease nomenclature [J].
Alnemri, ES ;
Livingston, DJ ;
Nicholson, DW ;
Salvesen, G ;
Thornberry, NA ;
Wong, WW ;
Yuan, JY .
CELL, 1996, 87 (02) :171-171
[3]  
Baldazo R, 1996, BYTE, V21, P22
[4]   Phosphorylation of I kappa B-alpha inhibits its cleavage by caspase CPP32 in vitro [J].
Barkett, M ;
Xue, D ;
Horvitz, HR ;
Gilmore, TD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (47) :29419-29422
[5]   An essential role for NF-kappa B in preventing TNF-alpha-induced cell death [J].
Beg, AA ;
Baltimore, D .
SCIENCE, 1996, 274 (5288) :782-784
[6]   PYRROLIDINE DITHIOCARBAMATE, A POTENT INHIBITOR OF NUCLEAR FACTOR KAPPA-B (NF-KAPPA-B) ACTIVATION, PREVENTS APOPTOSIS IN HUMAN PROMYELOCYTIC LEUKEMIA HL-60 CELLS AND THYMOCYTES [J].
BESSHO, R ;
MATSUBARA, K ;
KUBOTA, M ;
KUWAKADO, K ;
HIROTA, H ;
WAKAZONO, Y ;
LIN, YW ;
OKUDA, A ;
KAWAI, M ;
NISHIKOMORI, R ;
HEIKE, T .
BIOCHEMICAL PHARMACOLOGY, 1994, 48 (10) :1883-1889
[7]   CENTRAL OF I-KAPPA-B-ALPHA PROTEOLYSIS BY SITE-SPECIFIC, SIGNAL-INDUCED PHOSPHORYLATION [J].
BROWN, K ;
GERSTBERGER, S ;
CARLSON, L ;
FRANZOSO, G ;
SIEBENLIST, U .
SCIENCE, 1995, 267 (5203) :1485-1488
[8]   SIGNAL-INDUCED SITE-SPECIFIC PHOSPHORYLATION TARGETS I-KAPPA-B-ALPHA TO THE UBIQUITIN-PROTEASOME PATHWAY [J].
CHEN, ZJ ;
HAGLER, J ;
PALOMBELLA, VJ ;
MELANDRI, F ;
SCHERER, D ;
BALLARD, D ;
MANIATIS, T .
GENES & DEVELOPMENT, 1995, 9 (13) :1586-1597
[9]   Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappa B control [J].
Chu, ZL ;
McKinsey, TA ;
Liu, L ;
Gentry, JJ ;
Malim, MH ;
Ballard, DW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (19) :10057-10062
[10]   Proapoptotic effects of Tau cleavage product generated by caspase-3 [J].
Chung, CW ;
Song, YH ;
Kim, IK ;
Yoon, WJ ;
Ryu, BR ;
Jo, DG ;
Woo, HN ;
Kwon, YK ;
Kim, HH ;
Gwag, BJ ;
Mook-Jung, IH ;
Jung, YK .
NEUROBIOLOGY OF DISEASE, 2001, 8 (01) :162-172