In situ engineering of urchin-like reduced graphene oxide-Mn2O3-Mn3O4 nanostructures for supercapacitors

被引:39
作者
Chidembo, Alfred Tawirirana [1 ]
Aboutalebi, Seyed Hamed [1 ]
Konstantinov, Konstantin [1 ]
Jafta, Charl Jeremy [2 ]
Liu, Hua Kun [1 ]
Ozoemena, Kenneth Ikechukwu [2 ,3 ]
机构
[1] Univ Wollongong, ISEM, Wollongong, NSW 2519, Australia
[2] CSIR, Energy Mat Unit, ZA-0001 Pretoria, South Africa
[3] Univ Pretoria, Dept Chem, ZA-0002 Pretoria, South Africa
基金
澳大利亚研究理事会;
关键词
HYDROTHERMAL SYNTHESIS; ELECTROCHEMICAL PROPERTIES; ENERGY-STORAGE; COMPOSITES; ELECTRODES; GROWTH; MN3O4; MECHANISM; FACILE; MNO2;
D O I
10.1039/c3ra44973d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report the use of a spray pyrolysis method to synthesize high surface area (BET surface area of 139 m(2) g(-1)) self-organized, micron sized urchin-like composites made up of reduced graphene oxide and needle-shaped manganese oxide (rGO-Mn2O3-Mn3O4). Maximum capacitances of 425 Fg(-1) at 5 mV s(-1) from a three electrode set up and 133 Fg(-1) at a current density of 0.2 Ag-1 were recorded using an asymmetric two electrode set up with graphene as the anode. The composite material also showed a capacitance retention of 83% over 1000 cycles. We attribute this remarkable performance to the high specific surface area due to the urchin-like hollow structures and synergy between the manganese oxide and reduced graphene oxide materials within the composite. Furthermore, this synthesis technique can be exploited further in the bulk synthesis of cost effective graphene-metal oxide hybrid materials for energy storage applications.
引用
收藏
页码:886 / 892
页数:7
相关论文
共 38 条
[1]   Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors [J].
Aboutalebi, Seyed Hamed ;
Chidembo, Alfred T. ;
Salari, Maryam ;
Konstantinov, Konstantin ;
Wexler, David ;
Liu, Hua Kun ;
Dou, Shi Xue .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (05) :1855-1865
[2]   Graphene Oxide-MnO2 Nanocomposites for Supercapacitors [J].
Chen, Sheng ;
Zhu, Junwu ;
Wu, Xiaodong ;
Han, Qiaofeng ;
Wang, Xin .
ACS NANO, 2010, 4 (05) :2822-2830
[3]   Shape-Controlled Synthesis of One-Dimensional MnO2 via a Facile Quick-Precipitation Procedure and its Electrochemical Properties [J].
Chen, Sheng ;
Zhu, Junwu ;
Han, Qiaofeng ;
Zheng, Zhijun ;
Yang, Yong ;
Wang, Xin .
CRYSTAL GROWTH & DESIGN, 2009, 9 (10) :4356-4361
[4]   Highly flexible supercapacitors with manganese oxide nanosheet/carbon cloth electrode [J].
Chen, Ying-Chu ;
Hsu, Yu-Kuei ;
Lin, Yan-Gu ;
Lin, Yu-Kai ;
Horng, Ying-Ying ;
Chen, Li-Chyong ;
Chen, Kuei-Hsien .
ELECTROCHIMICA ACTA, 2011, 56 (20) :7124-7130
[5]   Synergistic Effects from Graphene and Carbon Nanotubes Enable Flexible and Robust Electrodes for High-Performance Supercapacitors [J].
Cheng, Yingwen ;
Lu, Songtao ;
Zhang, Hongbo ;
Varanasi, Chakrapani V. ;
Liu, Jie .
NANO LETTERS, 2012, 12 (08) :4206-4211
[6]   Dense and long carbon nanotube arrays decorated with Mn3O4 nanoparticles for electrodes of electrochemical supercapacitors [J].
Cui, Xinwei ;
Hu, Fengping ;
Wei, Weifeng ;
Chen, Weixing .
CARBON, 2011, 49 (04) :1225-1234
[7]  
Greenwood N. N., 2012, Chemistry of the Elements
[8]   Low-temperature hydrothermal synthesis of Mn3O4 and MnOOH single crystals:: Determinant influence of oxidants [J].
Hu, Chi-Chang ;
Wu, Yung-Tai ;
Chang, Kuo-Hsin .
CHEMISTRY OF MATERIALS, 2008, 20 (09) :2890-2894
[9]   Manganese oxide/graphene oxide composites for high-energy aqueous asymmetric electrochemical capacitors [J].
Jafta, Charl J. ;
Nkosi, Funeka ;
le Roux, Lukas ;
Mathe, Mkhulu K. ;
Kebede, Mesfin ;
Makgopa, Katlego ;
Song, Yang ;
Tong, Dennis ;
Oyama, Munetaka ;
Manyala, Ncholu ;
Chen, Shaowei ;
Ozoemena, Kenneth I. .
ELECTROCHIMICA ACTA, 2013, 110 :228-233
[10]   Hydrothermal synthesis of novel Mn3O4 nano-octahedrons with enhanced supercapacitors performances [J].
Jiang, Hao ;
Zhao, Ting ;
Yan, Chaoyi ;
Ma, Jan ;
Li, Chunzhong .
NANOSCALE, 2010, 2 (10) :2195-2198