Oxidative inactivation of cytochrome P-450 1A (CYP1A) stimulated by 3,3′,4,4′-tetrachlorobiphenyl:: Production of reactive oxygen by vertebrate CYP1As

被引:195
作者
Schlezinger, JJ [1 ]
White, RD [1 ]
Stegeman, JJ [1 ]
机构
[1] Woods Hole Oceanog Inst, Dept Biol, Woods Hole, MA 02543 USA
关键词
D O I
10.1124/mol.56.3.588
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Microsomal cytochrome P-450 1A (CYP1A) in a vertebrate model (the teleost fish scup) is inactivated by the aryl hydrocarbon receptor agonist 3,3',4,4'-tetrachlorobiphenyl (TCB). Here, the mechanism of CYP1A inactivation and its relationship to reactive oxygen species (ROS) formation were examined by using liver microsomes from soup and rat and expressed human CYP1As. In vitro inactivation of scup CYP1A activity 7-ethoxyresorufin O-deethylation by TCB was time dependent, NADPH dependent, oxygen dependent, and irreversible. TCB increased microsomal NADPH oxidation rates, and CYP1A inactivation was lessened by adding cytochrome c. CYP1A inactivation was accompanied by loss of spectral P-450, a variable loss of heme and a variable appearance of P-420. Rates of scup liver microsomal metabolism of TCB were < 0.5 pmol/min/mg, 25-fold less than the rate of P-450 loss. Non-heme iron chelators, antioxidant enzymes, and ROS scavengers had no influence on inactivation. Inactivation was accelerated by H2O2 and azide but not by hydroxylamine or aminotriazole. TCB also inactivated rat liver microsomal CYP1A, apparently CYP1A1, Adding TCB to scup or rat liver microsomes containing induced levels of CYP1A, but not control microsomes, stimulated formation of ROS; formation rates correlated with native CYP1A1 content. TCB stimulated ROS formation by baculovirus-expressed human CYP1A1 but not CYP1A2. The results indicate that TCB uncouples the catalytic cycle of CYP1A, ostensibly CYP1A1, resulting in formation of ROS within the active site. These ROS may inactivate CYP1A or escape from the enzyme. ROS formed by CYP1A1 may contribute to the toxicity of planar halogenated aromatic hydrocarbons.
引用
收藏
页码:588 / 597
页数:10
相关论文
共 48 条
[1]   OXYGEN RADICAL FORMATION DURING CYTOCHROME P450-CATALYZED CYCLOSPORINE METABOLISM IN RAT AND HUMAN LIVER-MICROSOMES AT VARYING HYDROGEN-ION CONCENTRATIONS [J].
AHMED, SS ;
NAPOLI, KL ;
STROBEL, HW .
MOLECULAR AND CELLULAR BIOCHEMISTRY, 1995, 151 (02) :131-140
[2]   EFFECT OF HYDROGEN-PEROXIDE ON THE IRON-CONTAINING SUPEROXIDE-DISMUTASE OF ESCHERICHIA-COLI [J].
BEYER, WF ;
FRIDOVICH, I .
BIOCHEMISTRY, 1987, 26 (05) :1251-1257
[3]   CONTRIBUTION OF HEPATIC CYTOCHROME-P450 SYSTEMS TO THE GENERATION OF REACTIVE OXYGEN SPECIES [J].
BONDY, SC ;
NADERI, S .
BIOCHEMICAL PHARMACOLOGY, 1994, 48 (01) :155-159
[4]   EFFECT OF UROPORPHYRIN ON THE SPECTRAL MEASUREMENT OF CYTOCHROME-P-450 [J].
BONKOVSKY, HL ;
HEALEY, JF ;
BEMENT, WJ ;
SINCLAIR, PR ;
SINCLAIR, JF ;
SHEDLOFSKY, SI .
BIOCHEMICAL PHARMACOLOGY, 1984, 33 (03) :499-502
[5]   Correlation of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced apoptotic cell death in the embryonic vasculature with embryotoxicity [J].
Cantrell, SM ;
Joy-Schlezinger, J ;
Stegeman, JJ ;
Tillitt, DE ;
Hannink, M .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 1998, 148 (01) :24-34
[6]   TIGHT-BINDING INHIBITORS .1. KINETIC-BEHAVIOR [J].
CHA, S .
BIOCHEMICAL PHARMACOLOGY, 1975, 24 (23) :2177-2185
[7]  
DEMATTEIS F, 1991, MOL PHARMACOL, V40, P686
[8]   MECHANISM-BASED INACTIVATION OF HORSERADISH-PEROXIDASE BY SODIUM-AZIDE - FORMATION OF MESO-AZIDOPROTOPORPHYRIN-IX [J].
DEMONTELLANO, PRO ;
DAVID, SK ;
ATOR, MA ;
TEW, D .
BIOCHEMISTRY, 1988, 27 (15) :5470-5476
[9]   HYDROXYL-RADICAL PRODUCTION AND ETHANOL OXIDATION BY LIVER-MICROSOMES ISOLATED FROM ETHANOL-TREATED RATS [J].
EKSTROM, G ;
CRONHOLM, T ;
INGELMANSUNDBERG, M .
BIOCHEMICAL JOURNAL, 1986, 233 (03) :755-761
[10]   The interaction of NADPH-P450 reductase with P450: An electrochemical study of the role of the flavin mononucleotide-binding domain [J].
Estabrook, RW ;
Shet, MS ;
Fisher, CW ;
Jenkins, CM ;
Waterman, MR .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1996, 333 (01) :308-315