Synchronization of chaotic systems with parametric uncertainty using active sliding mode control

被引:104
作者
Zhang, H [1 ]
Ma, XK
Liu, WZ
机构
[1] Xi An Jiao Tong Univ, Sch Elect Engn, Grp Theory & New Technol Elect Engn, Xian 710049, Peoples R China
[2] Chongqing Univ, Key Lab High Voltage Engn & Elect New Technol, Minist Educ, Chongqing 400044, Peoples R China
关键词
D O I
10.1016/j.chaos.2003.12.073
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents an active sliding mode control method for synchronizing two chaotic systems with parametric uncertainty. And a sufficient condition is drawn for the robust stability of the error dynamics, and is applied to guiding the design of the controllers. Finally, numerical results are used to show the robustness and effectiveness of the proposed control strategy. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1249 / 1257
页数:9
相关论文
共 25 条
[11]   Conditions for impulsive synchronization of chaotic and hyperchaotic system [J].
Itoh, M ;
Yang, T ;
Chua, LO .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (02) :551-560
[12]   Sliding mode control for a class of chaotic systems [J].
Konishi, K ;
Hirai, M ;
Kokame, H .
PHYSICS LETTERS A, 1998, 245 (06) :511-517
[13]   Bridge the gap between the Lorenz system and the Chen system [J].
Lü, JH ;
Chen, GR ;
Cheng, DZ ;
Celikovsky, S .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (12) :2917-2926
[14]   A new chaotic attractor coined [J].
Lü, JH ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (03) :659-661
[15]   On the geometry of master-slave synchronization [J].
Martens, M ;
Pécou, E ;
Tresser, C ;
Worfolk, P .
CHAOS, 2002, 12 (02) :316-323
[16]   Chaos synchronization based on a continuous chaos control method in semiconductor lasers with optical feedback [J].
Murakami, A ;
Ohtsubo, J .
PHYSICAL REVIEW E, 2001, 63 (06) :066203/1-066203/8
[17]   SYNCHRONIZATION IN CHAOTIC SYSTEMS [J].
PECORA, LM ;
CARROLL, TL .
PHYSICAL REVIEW LETTERS, 1990, 64 (08) :821-824
[18]   CONTINUOUS CONTROL OF CHAOS BY SELF-CONTROLLING FEEDBACK [J].
PYRAGAS, K .
PHYSICS LETTERS A, 1992, 170 (06) :421-428
[19]   Synchronization and intermittency in three-coupled chaotic oscillators [J].
Tsukamoto, N ;
Miyazaki, S ;
Fujisaka, H .
PHYSICAL REVIEW E, 2003, 67 (01) :15
[20]   Impulsive stabilization for control and synchronization of chaotic systems: Theory and application to secure communication [J].
Yang, T ;
Chua, LO .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1997, 44 (10) :976-988