The parcellation-based connectome: Limitations and extensions

被引:213
作者
de Reus, Marcel A. [1 ]
Van den Heuvel, Martijn P. [1 ]
机构
[1] Univ Med Ctr Utrecht, Dept Psychiat, Rudolf Magnus Inst, NL-3584 CX Utrecht, Netherlands
关键词
Brain network; Connectome; Connectivity; Parcellation; Graph analysis; Spatial resolution; HUMAN CEREBRAL-CORTEX; CONNECTIVITY-BASED PARCELLATION; STATE FUNCTIONAL CONNECTIVITY; SMALL-WORLD; HUMAN BRAIN; LOW-FREQUENCY; MICROSTRUCTURAL PARCELLATION; STRUCTURAL CONNECTIVITY; CORTICAL AREAS; SCALE-FREE;
D O I
10.1016/j.neuroimage.2013.03.053
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The human connectome is an intricate system of interconnected elements, providing the basis for integrative brain function. An essential step in the macroscopic mapping and examination of this network of structural and functional interactions is the subdivision of the brain into large-scale regions. Parcellation approaches used for the formation of macroscopic brain networks include application of predefined anatomical templates, randomly generated templates and voxel-based divisions. In this review, we discuss the use of such parcellation approaches for the examination of connectome characteristics. We specifically address the impact of the choice of parcellation scheme and resolution on the estimation of the brain's topological and spatial network features. Although organizational principles of functional and structural brain networks appear to be largely independent of the adopted parcellation approach, quantitative measures of these principles may be significantly modulated. Future parcellation-based connectome studies might benefit from the adoption of novel network tools and promising advances in connectivity-based parcellation approaches. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:397 / 404
页数:8
相关论文
共 113 条
[1]   A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs [J].
Achard, S ;
Salvador, R ;
Whitcher, B ;
Suckling, J ;
Bullmore, ET .
JOURNAL OF NEUROSCIENCE, 2006, 26 (01) :63-72
[2]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[3]   Classes of small-world networks [J].
Amaral, LAN ;
Scala, A ;
Barthélémy, M ;
Stanley, HE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (21) :11149-11152
[4]   The interaction of size and density with graph-level indices [J].
Anderson, BS ;
Butts, C ;
Carley, K .
SOCIAL NETWORKS, 1999, 21 (03) :239-267
[5]   Connectivity-based parcellation of Broca's area [J].
Anwander, A. ;
Tittgemeyer, M. ;
von Cramon, D. Y. ;
Friederici, A. D. ;
Knoesche, T. R. .
CEREBRAL CORTEX, 2007, 17 (04) :816-825
[6]   Equal Numbers of Neuronal and Nonneuronal Cells Make the Human Brain an Isometrically Scaled-Up Primate Brain [J].
Azevedo, Frederico A. C. ;
Carvalho, Ludmila R. B. ;
Grinberg, Lea T. ;
Farfel, Jose Marcelo ;
Ferretti, Renata E. L. ;
Leite, Renata E. P. ;
Jacob Filho, Wilson ;
Lent, Roberto ;
Herculano-Houzel, Suzana .
JOURNAL OF COMPARATIVE NEUROLOGY, 2009, 513 (05) :532-541
[7]   Neurofilament architecture of superior and mesial premotor cortex in the human brain [J].
Baleydier, C ;
Achache, P ;
Froment, JC .
NEUROREPORT, 1997, 8 (07) :1691-1696
[8]  
Basser PJ, 2000, MAGNET RESON MED, V44, P625, DOI 10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO
[9]  
2-O
[10]   Conserved and variable architecture of human white matter connectivity [J].
Bassett, Danielle S. ;
Brown, Jesse A. ;
Deshpande, Vibhas ;
Carlson, Jean M. ;
Grafton, Scott T. .
NEUROIMAGE, 2011, 54 (02) :1262-1279