The role of optimality in characterizing CO2 seepage from geologic carbon sequestration sites

被引:44
作者
Cortis, Andrea [1 ]
Oldenburg, Curtis M. [1 ]
Benson, Sally M. [2 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Earth Sci Div 90 1116, Berkeley, CA 94720 USA
[2] Stanford Univ, Dept Energy Resources Engn, Stanford, CA 94305 USA
关键词
Geologic storage; Monitoring networks; Optimization;
D O I
10.1016/j.ijggc.2008.04.008
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Storage of large amounts of carbon dioxide (CO2) in deep geologic formations for greenhouse-gas mitigation is gaining momentum and moving from its conceptual and testing stages towards widespread application. In this work we explore various optimization strategies for characterizing surface leakage (seepage) using near-surface measurement approaches such as accumulation chambers and eddy covariance towers. Seepage characterization objectives and limitations need to be defined carefully from the outset especially in light of large natural background variations that can mask seepage. The cost and sensitivity of seepage detection are related to four critical length scales pertaining to the size of the: (1) region that needs to be monitored; (2) footprint of the measurement approach, and (3) main seepage zone; (4) region in which concentrations or fluxes are influenced by seepage. Seepage characterization objectives may include one or all of the tasks of detecting, locating, and quantifying seepage. Each of these tasks has its own optimal strategy. Detecting and locating seepage in a region in which there is no expected or preferred location for seepage nor existing evidence for seepage requires monitoring on a fixed grid, e.g., using eddy covariance towers. The fixed-grid approaches needed to detect seepage are expected to require large numbers of eddy covariance towers for large-scale geologic CO2 storage. Once seepage has been detected and roughly located, seepage zones and features can be optimally pinpointed through a dynamic search strategy, e.g., employing accumulation chambers and/or soil-gas monitoring. Quantification of seepage rates can be done through measurements on a localized fixed grid once the seepage is pinpointed. Background measurements are essential for seepage detection in natural ecosystems. Artificial neural networks are considered as regression models useful for distinguishing natural system behavior from anomalous behavior suggestive of CO2 seepage without need for detailed understanding of natural system processes. Because of the local extrema in CO2 fluxes and concentrations in natural systems, simple steepest-descent algorithms are not effective and evolutionary computation algorithms are proposed as a paradigm for dynamic monitoring networks to pinpoint CO2 seepage areas. Published by Elsevier Ltd.
引用
收藏
页码:640 / 652
页数:13
相关论文
共 37 条
[1]   Eddy covariance measurement of CO2 flux to the atmosphere from an area of high volcanogenic emissions, Mammoth Mountain, California [J].
Anderson, DE ;
Farrar, CD .
CHEMICAL GEOLOGY, 2001, 177 (1-2) :31-42
[2]  
[Anonymous], 2004, Ant colony optimization
[3]   Modeling CO2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales [J].
Baldocchi, DD ;
Wilson, KB .
ECOLOGICAL MODELLING, 2001, 142 (1-2) :155-184
[4]  
Benson SM, 2006, SPE ANN TECHN C EXH, DOI [10.2118/102833-MS, DOI 10.2118/102833-MS]
[5]   PSOt - a Particle Swarm Optimization Toolbox for use with Matlab [J].
Birge, B .
PROCEEDINGS OF THE 2003 IEEE SWARM INTELLIGENCE SYMPOSIUM (SIS 03), 2003, :182-186
[6]   Soil CO2 flux measurements in volcanic and geothermal areas [J].
Chiodini, G ;
Cioni, R ;
Guidi, M ;
Raco, B ;
Marini, L .
APPLIED GEOCHEMISTRY, 1998, 13 (05) :543-552
[7]  
Eberhart R., 1995, MHS 95 P 6 INT S MIC, DOI DOI 10.1109/MHS.1995.494215
[8]   An initial intercomparison of micrometeorological and ecological inventory estimates of carbon exchange in a mid-latitude deciduous forest [J].
Ehman, JL ;
Schmid, HP ;
Grimmond, CSB ;
Randolph, JC ;
Hanson, PJ ;
Wayson, CA ;
Cropley, FD .
GLOBAL CHANGE BIOLOGY, 2002, 8 (06) :575-589
[9]   Tools for quality assessment of surface-based flux measurements [J].
Foken, T ;
Wichura, B .
AGRICULTURAL AND FOREST METEOROLOGY, 1996, 78 (1-2) :83-105
[10]  
Goulden ML, 1997, TREE PHYSIOL, V17, P537