MnO/reduced graphene oxide sheet hybrid as an anode for Li-ion batteries with enhanced lithium storage performance

被引:193
作者
Mai, Y. J.
Zhang, D.
Qiao, Y. Q.
Gu, C. D.
Wang, X. L.
Tu, J. P. [1 ]
机构
[1] Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
关键词
Manganese monoxide; Graphene; Hybrid; Lithium ion battery; REVERSIBLE CAPACITY; ELECTRODE MATERIALS; METAL FLUORIDES; NANOPARTICLES; CONVERSION; STABILITY; NANOTUBES; COMPOSITE;
D O I
10.1016/j.jpowsour.2012.05.084
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Relatively small hysteresis in voltage, appropriate electromotive force and low average delithiation voltage make MnO, among many transition metal oxides. MnO/reduced graphene oxide sheet (MnO/RGOS) hybrid is synthesized by a two-step electrode design consisting of liquid phase deposition of MnCO3 nanoparticles on the surface of graphene oxide sheets followed by heat treatment in flowing nitrogen. As an anode for Li-ion batteries, the MnO/RGOS hybrid electrode shows a reversible capacity of 665.5 mA h g(-1) after 50 cycles at a current density of 100 mA g(-1) and delivers 454.2 mA h g(-1) at a rate of 400 mA g(-1), which is obviously better than that of bare MnO electrode. Those reasons for such enhanced electrochemical properties are investigated by galvanostatic intermittent titration technique (GITT) as well as electrochemical impedance spectroscopy (EIS). The probable origins, in the term of thermodynamic and kinetic factors, for the marked hysteresis in voltage observed between charge and discharge are also discussed. (C) 2012 Elsevier BM. All rights reserved.
引用
收藏
页码:201 / 207
页数:7
相关论文
共 50 条
[1]   Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity [J].
Balaya, P ;
Li, H ;
Kienle, L ;
Maier, J .
ADVANCED FUNCTIONAL MATERIALS, 2003, 13 (08) :621-625
[2]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[3]  
Débart A, 2001, J ELECTROCHEM SOC, V148, pA1266, DOI 10.1149/1.1409971
[4]   Coaxial MnO/C nanotubes as anodes for lithium-ion batteries [J].
Ding, Y. L. ;
Wu, C. Y. ;
Yu, H. M. ;
Xie, J. ;
Cao, G. S. ;
Zhu, T. J. ;
Zhao, X. B. ;
Zeng, Y. W. .
ELECTROCHIMICA ACTA, 2011, 56 (16) :5844-5848
[5]   Carbon scaffold structured silicon anodes for lithium-ion batteries [J].
Guo, Juchen ;
Chen, Xilin ;
Wang, Chunsheng .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (24) :5035-5040
[6]   Raman scattering from high-frequency phonons in supported n-graphene layer films [J].
Gupta, A. ;
Chen, G. ;
Joshi, P. ;
Tadigadapa, S. ;
Eklund, P. C. .
NANO LETTERS, 2006, 6 (12) :2667-2673
[7]   Lower-Defect Graphene Oxide Nanoribbons from Multiwalled Carbon Nanotubes [J].
Higginbotham, Amanda L. ;
Kosynkin, Dmitry V. ;
Sinitskii, Alexander ;
Sun, Zhengzong ;
Tour, James M. .
ACS NANO, 2010, 4 (04) :2059-2069
[8]   Net-structured NiO-C nanocomposite as Li-intercalation electrode material [J].
Huang, X. H. ;
Tu, J. P. ;
Zhang, C. Q. ;
Xiang, J. Y. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (05) :1180-1184
[9]   Nanocrystallinity effects in lithium battery materials - Aspects of nano-ionics. Part IV [J].
Jamnik, J ;
Maier, J .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2003, 5 (23) :5215-5220
[10]   Origin of capacity fading in nano-sized Co3O4 electrodes:: Electrochemical impedance spectroscopy study [J].
Kang, Jin-Gu ;
Ko, Young-Dae ;
Park, Jae-Gwan ;
Kim, Dong-Wan .
NANOSCALE RESEARCH LETTERS, 2008, 3 (10) :390-394