Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites

被引:152
作者
Golding, NL
Kath, WL
Spruston, N
机构
[1] Northwestern Univ, Dept Neurobiol & Physiol, Inst Neurosci, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Engn Sci & Appl Math, Evanston, IL 60208 USA
关键词
D O I
10.1152/jn.2001.86.6.2998
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In hippocampal CA1 pyramidal neurons, action potentials are typically initiated in the axon and backpropagate into the dendrites, shaping the integration of synaptic activity and influencing the induction of synaptic plasticity. Despite previous reports describing action-potential propagation in the proximal apical dendrites, the extent to which action potentials invade the distal dendrites of CA1 pyramidal neurons remains controversial. Using paired somatic and dendritic whole cell recordings, we find that in the dendrites proximal to 280 mum from the soma, single backpropagating action potentials exhibit <50% attenuation from their amplitude in the soma. However, in dendritic recordings distal to 300 <mu>m from the soma, action potentials in most cells backpropagated either strongly (26-42% attenuation; n = 9/20) or weakly (71-87% attenuation; n = 10/20) with only one cell exhibiting an intermediate value (45% attenuation). In experiments combining dual somatic and dendritic whole cell recordings with calcium imaging, the amount of calcium influx triggered by backpropagating action potentials was correlated with the extent of action-potential invasion of the distal dendrites. Quantitative morphometric analyses revealed that the dichotomy in action-potential backpropagation occurred in the presence of only subtle differences in either the diameter of the primary apical dendrite or branching pattern. In addition, action-potential backpropagation was not dependent on a number of electrophysiological parameters (input resistance, resting potential, voltage sensitivity of dendritic spike amplitude). There was, however, a striking correlation of the shape of the action potential at the soma with its amplitude in the dendrite; larger, faster-rising, and narrower somatic action potentials exhibited more attenuation in the distal dendrites (300-410 mum from the soma). Simple compartmental models of CA1 pyramidal neurons revealed that a dichotomy in action-potential backpropagation could be generated in response to subtle manipulations of the distribution of either sodium or potassium channels in the dendrites. Backpropagation efficacy could also be influenced by local alterations in dendritic side branches, but these effects were highly sensitive to model parameters. Based on these findings, we hypothesize that the observed dichotomy in dendritic action-potential amplitude is conferred primarily by differences in the distribution, density, or modulatory state of voltage-gated channels along the somatodendritic axis.
引用
收藏
页码:2998 / 3010
页数:13
相关论文
共 52 条
[1]   REGENERATIVE PROPERTIES OF PYRAMIDAL CELL DENDRITES IN AREA CA1 OF THE RAT HIPPOCAMPUS [J].
ANDREASEN, M ;
LAMBERT, JDC .
JOURNAL OF PHYSIOLOGY-LONDON, 1995, 483 (02) :421-441
[2]   Synaptic plasticity in a cerebellum-like structure depends on temporal order [J].
Bell, CC ;
Han, VZ ;
Sugawara, Y ;
Grant, K .
NATURE, 1997, 387 (6630) :278-281
[3]   Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type [J].
Bi, GQ ;
Poo, MM .
JOURNAL OF NEUROSCIENCE, 1998, 18 (24) :10464-10472
[4]   Action potential propagation into the presynaptic dendrites of rat mitral cells [J].
Bischofberger, J ;
Jonas, P .
JOURNAL OF PHYSIOLOGY-LONDON, 1997, 504 (02) :359-365
[5]   FREQUENCY-DEPENDENT PROPAGATION OF SODIUM ACTION-POTENTIALS IN DENDRITES OF HIPPOCAMPAL CA1 PYRAMIDAL NEURONS [J].
CALLAWAY, JC ;
ROSS, WN .
JOURNAL OF NEUROPHYSIOLOGY, 1995, 74 (04) :1395-1403
[6]  
Cantrell AR, 1997, J NEUROSCI, V17, P7330
[7]   Muscarinic modulation of sodium current by activation of protein kinase C in rat hippocampal neurons [J].
Cantrell, AR ;
Ma, JY ;
Scheuer, T ;
Catterall, WA .
NEURON, 1996, 16 (05) :1019-1026
[8]   Forward and backward propagation of dendritic impulses and their synaptic control in mitral cells [J].
Chen, WR ;
Midtgaard, J ;
Shepherd, GM .
SCIENCE, 1997, 278 (5337) :463-467
[9]  
Christie BR, 1996, HIPPOCAMPUS, V6, P17, DOI 10.1002/(SICI)1098-1063(1996)6:1<17::AID-HIPO4>3.0.CO
[10]  
2-4