Noninvasive prediction of tumor responses to gemcitabine using positron emission tomography

被引:45
作者
Laing, Rachel E. [1 ,2 ]
Walter, Martin A. [3 ]
Campbell, Dean O. [1 ,2 ]
Herschman, Harvey R. [1 ,2 ]
Satyamurthy, Nagichettiar [1 ]
Phelps, Michael E. [1 ,2 ]
Czernin, Johannes [1 ,3 ]
Witte, Owen N. [1 ,4 ,5 ]
Radu, Caius G. [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Mol & Med Pharmacol, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Crump Inst Mol Imaging, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Ahmanson Biol Imaging Div, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Howard Hughes Med Inst, Los Angeles, CA 90095 USA
[5] Univ Calif Los Angeles, David Geffen Sch Med, Dept Microbiol Mol Genet & Immunol, Los Angeles, CA 90095 USA
基金
美国国家卫生研究院;
关键词
F-18] FAC; individualized chemotherapy; molecular imaging; deoxycytidine kinase; GASTROINTESTINAL STROMAL TUMORS; DEOXYCYTIDINE KINASE-ACTIVITY; RANDOMIZED PHASE-III; CELL LUNG-CANCER; IN-VIVO; BREAST-CANCER; PANCREATIC ADENOCARCINOMA; ENZYME-ACTIVITY; F-18-FDG PET; RESISTANCE;
D O I
10.1073/pnas.0812890106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gemcitabine (2',2'-difluorodeoxycytidine, dFdC) and cytosine arabinoside (cytarabine, ara-C) represent a class of nucleoside analogs used in cancer chemotherapy. Administered as prodrugs, dFdC and ara-C are transported across cell membranes and are converted to cytotoxic derivatives through consecutive phosphorylation steps catalyzed by endogenous nucleoside kinases. Deoxycytidine kinase (DCK) controls the rate-limiting step in the activation cascade of dFdC and ara-C. DCK activity varies significantly among individuals and across different tumor types and is a critical determinant of tumor responses to these prodrugs. Current assays to measure DCK expression and activity require biopsy samples and are prone to sampling errors. Noninvasive methods that can detect DCK activity in tumor lesions throughout the body could circumvent these limitations. Here, we demonstrate an approach to detecting DCK activity in vivo by using positron emission tomography (PET) and F-18-labeled 1-(2'-deoxy-2'-fluoroarabinofuranosyl) cytosine] ([F-18]FAC), a PET probe recently developed by our group. We show that [F-18]FAC is a DCK substrate with an affinity similar to that of dFdC. In vitro, accumulation of [F-18]FAC in murine and human leukemia cell lines is critically dependent on DCK activity and correlates with dFdC sensitivity. In mice, [F-18]FAC accumulates selectively in DCK-positive vs. DCK-negative tumors, and [F-18]FAC microPET scans can predict responses to dFdC. We suggest that [F-18]FAC PET might be useful for guiding treatment decisions in certain cancers by enabling individualized chemotherapy.
引用
收藏
页码:2847 / 2852
页数:6
相关论文
共 47 条
[1]   Clinical studies of pemetrexed and gemcitabine combinations [J].
Adjei, A. A. .
ANNALS OF ONCOLOGY, 2006, 17 :V29-V32
[2]   Prolonged fixed dose rate infusion of gemcitabine with autologous haemopoietic support in advanced pancreatic adenocarcinoma [J].
Bengala, C ;
Guarneri, V ;
Giovannetti, E ;
Lencioni, M ;
Fontana, E ;
Mey, V ;
Fontana, A ;
Boggi, U ;
Del Chiaro, M ;
Danesi, R ;
Ricci, S ;
Mosca, F ;
Del Tacca, M ;
Conte, PF .
BRITISH JOURNAL OF CANCER, 2005, 93 (01) :35-40
[3]   In vivo induction of resistance to gemcitabine results in increased expression of ribonucleotide reductase subunit M1 as the major determinant [J].
Bergman, AM ;
Eijk, PP ;
van Haperen, VWTR ;
Smid, K ;
Veerman, G ;
Hubeek, I ;
van den Ijssel, P ;
Ylstra, B ;
Peters, GJ .
CANCER RESEARCH, 2005, 65 (20) :9510-9516
[4]   Determinants of resistance to 2′,2′-difluorodeoxycytidine (gemcitabine) [J].
Bergman, AM ;
Pinedo, HM ;
Peters, GJ .
DRUG RESISTANCE UPDATES, 2002, 5 (01) :19-33
[5]   Small-animal PET Imaging of human epidermal growth factor receptor type 2 expression with site-specific 18F-labeled protein scaffold molecules [J].
Cheng, Zhen ;
De Jesus, Omayra Padilla ;
Namavari, Mohammad ;
De, Abhijit ;
Levi, Jelena ;
Webster, Jack Matt ;
Zhang, Rong ;
Lee, Brian ;
Syud, Faisal A. ;
Gambhir, Sanjiv Sam .
JOURNAL OF NUCLEAR MEDICINE, 2008, 49 (05) :804-813
[6]  
Colucci G, 2002, CANCER, V94, P902, DOI 10.1002/cncr.10323.abs
[7]   In vivo pathology: Seeing with molecular specificity and cellular resolution in the living body [J].
Contag, Christopher H. .
ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE, 2007, 2 :277-305
[8]   An increase in the expression of ribonucleotide reductase large subunit 1 is associated with gemcitabine resistance in non-small cell lung cancer cell lines [J].
Davidson, JD ;
Ma, LD ;
Flagella, M ;
Geeganage, S ;
Gelbert, LM ;
Slapak, CA .
CANCER RESEARCH, 2004, 64 (11) :3761-3766
[9]   Early changes in [18F]FLT uptake after chemotherapy:: an experimental study [J].
Dittmann, H ;
Dohmen, BM ;
Kehlbach, R ;
Bartusek, G ;
Pritzkow, M ;
Sarbia, M ;
Bares, R .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2002, 29 (11) :1462-1469
[10]   RETRACTED: RNA interference targeting the M2 subunit of ribonucleotide reductase enhances pancreatic adenocarcinoma chemosensitivity to gemcitabine (Retracted article. See FEB, 2023) [J].
Duxbury, MS ;
Ito, H ;
Zinner, MJ ;
Ashley, SW ;
Whang, EE .
ONCOGENE, 2004, 23 (08) :1539-1548