An integrated cross-platform prognosis study on neuroblastoma patients

被引:47
作者
Chen, Qing-Rong [1 ,2 ]
Song, Young K. [1 ]
Wei, Jun S. [1 ]
Bilke, Sven [1 ]
Asgharzadeh, Shahab [3 ]
Seeger, Robert C. [3 ]
Khan, Javed [1 ]
机构
[1] NCI, Oncogen Sect, Pediat Oncol Branch, Adv Technol Ctr, Gaithersburg, MD 20877 USA
[2] NCI, SAIC Frederick Inc, Frederick, MD 21702 USA
[3] Childrens Hosp Los Angeles, Div Hematol Oncol, Dept Pediat, Los Angeles, CA 90027 USA
基金
美国国家卫生研究院;
关键词
neuroblastoma; prognosis; microarray; platform;
D O I
10.1016/j.ygeno.2008.05.014
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
There have been several reports about the potential for predicting prognosis of neuroblastoma patients using microarray gene expression profiling of the tumors. However these studies have revealed an apparent diversity in the identity of the genes in their predictive signatures. To test the contribution of the platform to this discrepancy we applied the z-scoring method to minimize the impact of platform and combine gene expression profiles of neuroblastoma (NB) tumors from two different platforms, cDNA and Affymetrix. A total of 12442 genes were common to both cDNA and Affymetrix arrays in our data set. Two-way ANOVA analysis was applied to the combined data set for assessing the relative effect of prognosis and platform on gene expression. We found that 26.6% (3307) of the genes had significant impact on survival. There was no significant impact of microarray platform on expression after application of z-scoring standardization procedure. Artificial neural network (ANN) analysis of the combined data set in a leave-one-out prediction Strategy correctly predicted the outcome for 90% of the samples. Hierarchical clustering analysis using the top-ranked 160 genes showed the great separation of two clusters, and the majority of matched samples from the different platforms were clustered next to each other. The ANN classifier trained with our combined cross-platform data for these 160 genes could predict the prognosis of 102 independent test samples with 71% accuracy. Furthermore it correctly predicted the outcome for 85/102 (83%) NB patients through the leave-one-out cross-validation approach. Our study showed that gene expression studies performed in different platforms could be integrated for prognosis analysis after removing variation resulting from different platforms. Published by Elsevier Inc.
引用
收藏
页码:195 / 203
页数:9
相关论文
共 18 条
[1]  
Asgharzadeh S, 2006, JNCI-J NATL CANCER I, V98, P1193, DOI 10.1093/jnci/djj330
[2]   Standardizing global gene expression analysis between laboratories and across platforms [J].
Bammler, T ;
Beyer, RP ;
Bhattacharya, S ;
Boorman, GA ;
Boyles, A ;
Bradford, BU ;
Bumgarner, RE ;
Bushel, PR ;
Chaturvedi, K ;
Choi, D ;
Cunningham, ML ;
Dengs, S ;
Dressman, HK ;
Fannin, RD ;
Farun, FM ;
Freedman, JH ;
Fry, RC ;
Harper, A ;
Humble, MC ;
Hurban, P ;
Kavanagh, TJ ;
Kaufmann, WK ;
Kerr, KF ;
Jing, L ;
Lapidus, JA ;
Lasarev, MR ;
Li, J ;
Li, YJ ;
Lobenhofer, EK ;
Lu, X ;
Malek, RL ;
Milton, S ;
Nagalla, SR ;
O'Malley, JP ;
Palmer, VS ;
Pattee, P ;
Paules, RS ;
Perou, CM ;
Phillips, K ;
Qin, LX ;
Qiu, Y ;
Quigley, SD ;
Rodland, M ;
Rusyn, I ;
Samson, LD ;
Schwartz, DA ;
Shi, Y ;
Shin, JL ;
Sieber, SO ;
Slifer, S .
NATURE METHODS, 2005, 2 (05) :351-356
[3]   Adjustment of systematic microarray data biases [J].
Benito, M ;
Parker, J ;
Du, Q ;
Wu, JY ;
Xang, D ;
Perou, CM ;
Marron, JS .
BIOINFORMATICS, 2004, 20 (01) :105-114
[4]   Estimating tree mortality of Norway spruce stands with neural networks [J].
Hasenauer, H ;
Merkl, D ;
Weingartner, M .
ADVANCES IN ENVIRONMENTAL RESEARCH, 2001, 5 (04) :405-414
[5]   Multiple-laboratory comparison of microarray platforms [J].
Irizarry, RA ;
Warren, D ;
Spencer, F ;
Kim, IF ;
Biswal, S ;
Frank, BC ;
Gabrielson, E ;
Garcia, JGN ;
Geoghegan, J ;
Germino, G ;
Griffin, C ;
Hilmer, SC ;
Hoffman, E ;
Jedlicka, AE ;
Kawasaki, E ;
Martínez-Murillo, F ;
Morsberger, L ;
Lee, H ;
Petersen, D ;
Quackenbush, J ;
Scott, A ;
Wilson, M ;
Yang, YQ ;
Ye, SQ ;
Yu, W .
NATURE METHODS, 2005, 2 (05) :345-349
[6]   Are data from different gene expression microarray platforms comparable? [J].
Järvinen, AK ;
Hautaniemi, S ;
Edgren, H ;
Auvinen, P ;
Saarela, J ;
Kallioniemi, OP ;
Monni, O .
GENOMICS, 2004, 83 (06) :1164-1168
[7]   Independence and reproducibility across microarray platforms [J].
Larkin, JE ;
Frank, BC ;
Gavras, H ;
Sultana, R ;
Quackenbush, J .
NATURE METHODS, 2005, 2 (05) :337-343
[8]   Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection [J].
Li, C ;
Wong, WH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (01) :31-36
[9]   A comparison of oligonucleotide and cDNA-based microarray systems [J].
Mah, N ;
Thelin, A ;
Lu, T ;
Nikolaus, S ;
Kühbacher, T ;
Gurbuz, Y ;
Eickhoff, H ;
Klöppel, G ;
Lehrach, H ;
Mellgård, B ;
Costello, CM ;
Schreiber, S .
PHYSIOLOGICAL GENOMICS, 2004, 16 (03) :361-370
[10]   Sequence-matched probes produce increased cross-platform consistency and more reproducible biological results in microarray-based gene expression measurements [J].
Mecham, BH ;
Klus, GT ;
Strovel, J ;
Augustus, M ;
Byrne, D ;
Bozso, P ;
Wetmore, DZ ;
Mariani, TJ ;
Kohane, IS ;
Szallasi, Z .
NUCLEIC ACIDS RESEARCH, 2004, 32 (09) :e74