Involvement of matrix metalloproteinase in thrombolysis-associated hemorrhagic transformation after embolic focal ischemia in rats

被引:380
作者
Sumii, T
Lo, EH [1 ]
机构
[1] Harvard Univ, Massachusetts Gen Hosp E, Sch Med, Neuroprotect Res Lab,Dept Neurol, Boston, MA 02129 USA
[2] Harvard Univ, Massachusetts Gen Hosp E, Sch Med, Neuroprotect Res Lab,Dept Radiol, Boston, MA 02129 USA
[3] Harvard Univ, Sch Med, Neurosci Program, Boston, MA 02215 USA
[4] Kinki Univ, Sch Med, Dept Neurosurg, Sayama, Osaka 589, Japan
关键词
cerebral hemorrhage; extracellular matrix; reperfusion injury; stroke; tissue plasminogen activator; rats;
D O I
10.1161/hs0302.104542
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background and Purpose-Thrombolytic therapy with tissue plasminogen activator (tPA) for acute ischemic stroke remains complicated by risks of hemorrhagic transformation. In this study we used a previously established quantitative rat model of tPA-associated hemorrhage to test the hypothesis that matrix metalloproteinases (MMPs) are involved. Methods-Spontaneously hypertensive rats were subjected to embolic focal ischemia by placing homologous blood clots into the middle cerebral artery. Three groups of rats were studied: (1) untreated controls that received saline at 6 hours after ischemia; (2) rats that received tPA alone (10 mg/kg at 6 hours after ischemia); and (3) rats that received tPA plus the broad-spectrum MMP inhibitor BB-94 (50 mg/kg of BB-94 before ischemia and at 3 and 6 hours after ischemia plus tPA at 6 hours). Gelatin zymography was used to quantify MMP levels. A hemoglobin spectrophotometry method was used to quantify cerebral hemorrhage. Ischemic lesions were measured at 24 hours with tetrazolium staining. Results-At 6, 12, and 24 hours, pro-MMP-9 and cleaved MMP-9 were upregulated in ischemic brain. At 12 hours, tPA-treated rats showed significantly higher levels of pro-MMP-9 and cleaved MMP-9 than untreated controls. By 24 hours, all rats showed evidence of hemorrhagic transformation in the ischemic territory. Rats treated with BB-94 and tPA showed significantly reduced hemorrhage volumes compared with those that received tPA alone. There was no effect on infarct size. Conclusions-These results indicate that (1) tPA treatment increases levels of MMP-9 after embolic focal cerebral ischemia, (2) MMPs are involved in the mechanism of tPA-associated hemorrhage, and (3) combination therapies with MMP inhibitors may be useful for decreasing the risk and severity of this dreaded complication of thrombolytic therapy.
引用
收藏
页码:831 / 836
页数:6
相关论文
共 49 条
[1]   Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia [J].
Asahi, M ;
Wang, XY ;
Mori, T ;
Sumii, T ;
Jung, JC ;
Moskowitz, MA ;
Fini, ME ;
Lo, EH .
JOURNAL OF NEUROSCIENCE, 2001, 21 (19) :7724-7732
[2]   Role for matrix metalloproteinase 9 after focal cerebral ischemia, effects of gene knockout and enzyme inhibition with BB-94 [J].
Asahi, M ;
Asahi, K ;
Jung, JC ;
del Zoppo, GJ ;
Fini, ME ;
Lo, EH .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2000, 20 (12) :1681-1689
[3]   Matrix metalloproteinase 2 gene knockout has no effect on acute brain injury after focal ischemia [J].
Asahi, M ;
Sumii, T ;
Fini, ME ;
Itohara, S ;
Lo, EH .
NEUROREPORT, 2001, 12 (13) :3003-3007
[4]   Reduction of tissue plasminogen activator-induced hemorrhage and brain injury by free radical spin trapping after embolic focal cerebral ischemia in rats [J].
Asahi, M ;
Asahi, K ;
Wang, XY ;
Lo, EH .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2000, 20 (03) :452-457
[5]   RAT MIDDLE CEREBRAL-ARTERY OCCLUSION - EVALUATION OF THE MODEL AND DEVELOPMENT OF A NEUROLOGIC EXAMINATION [J].
BEDERSON, JB ;
PITTS, LH ;
TSUJI, M ;
NISHIMURA, MC ;
DAVIS, RL ;
BARTKOWSKI, H .
STROKE, 1986, 17 (03) :472-476
[6]   Brain hemorrhages after rt-PA treatment of embolic stroke in spontaneously hypertensive rats [J].
Brinker, G ;
Pillekamp, F ;
Hossmann, KA .
NEUROREPORT, 1999, 10 (09) :1943-1946
[7]   Intracerebral hemorrhage after intravenous t-PA therapy for ischemic stroke [J].
Brott, T ;
Broderick, J ;
Kothari, R ;
ODonoghue, M ;
Barsan, W ;
Tomsick, T ;
Spilker, J ;
Miller, R ;
Sauerbeck, L ;
Farrell, J ;
Kelly, J ;
Perkins, T ;
Miller, R ;
McDonald, T ;
Rorick, M ;
Hickey, C ;
Armitage, J ;
Perry, C ;
Thalinger, K ;
Rhude, R ;
Schill, J ;
Becker, PS ;
Heath, RS ;
Adams, D ;
Reed, R ;
Klei, M ;
Hughes, A ;
Anthony, J ;
Baudendistel, D ;
Zadicoff, C ;
Rymer, M ;
Bettinger, I ;
Laubinger, P ;
Schmerler, M ;
Meiros, G ;
Lyden, P ;
Dunford, J ;
Zivin, J ;
Rapp, K ;
Babcock, T ;
Daum, P ;
Persona, D ;
Brody, M ;
Jackson, C ;
Lewis, S ;
Liss, J ;
Mahdavi, Z ;
Rothrock, J ;
Tom, T ;
Zweifler, R .
STROKE, 1997, 28 (11) :2109-2118
[8]  
CHAN PH, 1985, PROG BRAIN RES, V63, P227
[9]   Role of oxidants in ischemic brain damage [J].
Chan, PH .
STROKE, 1996, 27 (06) :1124-1129
[10]  
Chopp M, 1999, ACT NEUR S, V73, P67