Spike timing-dependent LTP/LTD mediates visual experience-dependent plasticity in a developing retinotectal system

被引:114
作者
Mu, Y [1 ]
Poo, MM [1 ]
机构
[1] Univ Calif Berkeley, Helen Wills Neurosci Inst, Dept Mol & Cell Biol, Div Neurobiol, Berkeley, CA 94720 USA
关键词
D O I
10.1016/j.neuron.2006.03.009
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Sensory experience plays an instructive role in the development of the nervous system. Here we showed that visual experience can induce persistent modification of developing retinotectal circuits via spike timing-dependent plasticity (STDP). Pairing light stimuli with spiking of the tectal cell induced persistent enhancement or reduction of light-evoked responses, with a dependence on the relative timing between light stimulus and postsynaptic spiking similar to that for STDP. Using precisely timed sequential three-bar stimulation to mimic a moving bar, we showed that spike timing-dependent LTP/LTD can account for the asymmetric modification of the tectal cell receptive field induced by moving bar. Furthermore, selective inhibition of signaling mediated by brain-derived neurotrophic factor and nitric oxide, which are respectively required for light-induced LTP and LTD, interfered with moving bar-induced temporally specific changes in the tectal cell responses. Together, these findings suggest that STDP can mediate sensory experience-dependent circuit refinement in the developing nervous system.
引用
收藏
页码:115 / 125
页数:11
相关论文
共 65 条
[1]   Synaptic plasticity: taming the beast [J].
Abbott, L. F. ;
Nelson, Sacha B. .
NATURE NEUROSCIENCE, 2000, 3 (11) :1178-1183
[2]   Induction of long-term potentiation and depression is reflected by corresponding changes in secretion of endogenous brain-derived neurotrophic factor [J].
Aicardi, G ;
Argilli, E ;
Cappello, S ;
Santi, S ;
Riccio, M ;
Thoenen, H ;
Canossa, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (44) :15788-15792
[3]  
ALEINIKOVA T V, 1981, Fiziologicheskii Zhurnal SSSR Imeni I M Sechenova, V67, P542
[4]   Visualizing synapse formation in arborizing optic axons in vivo:: dynamics and modulation by BDNF [J].
Alsina, B ;
Vu, T ;
Cohen-Cory, S .
NATURE NEUROSCIENCE, 2001, 4 (11) :1093-1101
[5]   Activity-dependent release of endogenous brain-derived neurotrophic factor from primary sensory neurons detected by ELISA in situ [J].
Balkowiec, A ;
Katz, DM .
JOURNAL OF NEUROSCIENCE, 2000, 20 (19) :7417-7423
[6]   MECHANISM OF DIRECTIONALLY SELECTIVE UNITS IN RABBITS RETINA [J].
BARLOW, HB ;
LEVICK, WR .
JOURNAL OF PHYSIOLOGY-LONDON, 1965, 178 (03) :477-&
[7]   Synaptic plasticity in a cerebellum-like structure depends on temporal order [J].
Bell, CC ;
Han, VZ ;
Sugawara, Y ;
Grant, K .
NATURE, 1997, 387 (6630) :278-281
[8]   Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type [J].
Bi, GQ ;
Poo, MM .
JOURNAL OF NEUROSCIENCE, 1998, 18 (24) :10464-10472
[9]   Distributed synaptic modification in neural networks induced by patterned stimulation [J].
Bi, GQ ;
Poo, MM .
NATURE, 1999, 401 (6755) :792-796
[10]   CHARACTERIZATION OF NERVE GROWTH-FACTOR (NGF) RELEASE FROM HIPPOCAMPAL-NEURONS - EVIDENCE FOR A CONSTITUTIVE AND AN UNCONVENTIONAL SODIUM-DEPENDENT REGULATED PATHWAY [J].
BLOCHL, A ;
THOENEN, H .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1995, 7 (06) :1220-1228