Storage of hydrogen on single-walled carbon nanotubes and other carbon structures

被引:121
作者
Poirier, E
Chahine, R
Bénard, P
Cossement, D
Lafi, L
Mélançon, E
Bose, TK
Désilets, S
机构
[1] Univ Quebec, Inst Rech Hydrogene, Trois Rivieres, PQ G9A 5H7, Canada
[2] R&D Def Canada Valcartier, Quebec City, PQ, Canada
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2004年 / 78卷 / 07期
关键词
D O I
10.1007/s00339-003-2415-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The sorption of hydrogen on carbon structures and nanostructures offers a way to reduce the storage pressure of hydrogen with respect to compression storage while achieving interesting gravimetric storage densities. The most readily available carbon structures, activated carbons, can achieve reproducible, high gravimetric storage densities under cryogenic operating conditions: 5-6% at 35 bar and 77 K, in excess of the normal density that would be present in the pore volume under compression at the same temperature and pressure. We discuss and compare the adsorption of hydrogen on high specific surface activated carbons, nanofibres and nanotubes from experimental and theoretical considerations. In particular, we present gravimetric and volumetric hydrogen sorption measurements on single-walled carbon nanotubes (SWNTs) at (1 bar, 77 K) and (1 bar, 295 K) within the context of our ongoing work on the storage of hydrogen on activated carbon and carbon nanostructures. BET surface area and XRD characterization results on SWNTs are also presented. The experiments were performed on as received, chemically treated and metal-incorporated SWNT samples. Hydrogen sorption capacities measured on treated samples ranged from similar to0 to about 1 wt. % at 1 bar and 295 K and reached about 4 wt. % at 1 bar and 77 K. Our results show that under certain conditions, SWNTs have better hydrogen uptake performance than large surface area activated carbons.
引用
收藏
页码:961 / 967
页数:7
相关论文
共 26 条
[1]   ADSORPTION-ISOTHERMS FOR MICROPOROUS ADSORBENTS [J].
ARANOVICH, GL ;
DONOHUE, MD .
CARBON, 1995, 33 (10) :1369-1375
[2]   Modeling of high-pressure adsorption isotherms above the critical temperature on microporous adsorbents: Application to methane [J].
Benard, P ;
Chahine, R .
LANGMUIR, 1997, 13 (04) :808-813
[3]   Determination of the adsorption isotherms of hydrogen on activated carbons above the Critical Temperature of the adsorbate over wide temperature and pressure ranges [J].
Bénard, P ;
Chahine, R .
LANGMUIR, 2001, 17 (06) :1950-1955
[4]   Modeling of adsorption storage of hydrogen on activated carbons [J].
Bénard, P ;
Chahine, R .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2001, 26 (08) :849-855
[5]  
CHAHINE R, 1994, INT J HYDROGEN ENERG, V19, P61
[6]   Pore structure of raw and purified HiPco single-walled carbon nanotubes [J].
Cinke, M ;
Li, J ;
Chen, B ;
Cassell, A ;
Delzeit, L ;
Han, J ;
Meyyappan, M .
CHEMICAL PHYSICS LETTERS, 2002, 365 (1-2) :69-74
[7]   Tempest in a tiny tube [J].
Dagani, R .
CHEMICAL & ENGINEERING NEWS, 2002, 80 (02) :25-28
[8]   Storage of hydrogen in single-walled carbon nanotubes [J].
Dillon, AC ;
Jones, KM ;
Bekkedahl, TA ;
Kiang, CH ;
Bethune, DS ;
Heben, MJ .
NATURE, 1997, 386 (6623) :377-379
[9]   Hydrogen storage using carbon adsorbents: past, present and future [J].
Dillon, AC ;
Heben, MJ .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2001, 72 (02) :133-142
[10]  
DILLON AC, P 2001 DOE HYDR REV