Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths

被引:198
作者
Dodson, Christopher M. [1 ]
Zia, Rashid [1 ]
机构
[1] Brown Univ, Sch Engn, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
MULTIPOLAR INTERBAND ABSORPTION; SEMICONDUCTOR QUANTUM-DOT; COMPLEX SPECTRA; OPTICAL-PROPERTIES; SURFACE; IONS; EU3+; SPECTROSCOPY; INTENSITIES; OPERATORS;
D O I
10.1103/PhysRevB.86.125102
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Given growing interest in optical-frequency magnetic dipole transitions, we use intermediate coupling calculations to identify strong magnetic dipole emission lines that are well suited for experimental study. The energy levels for all trivalent lanthanide ions in the 4 f(n) configuration are calculated using a detailed free ion Hamiltonian, including electrostatic and spin-orbit terms as well as two-body, three-body, spin-spin, spin-other-orbit, and electrostatically correlated spin-orbit interactions. These free ion energy levels and eigenstates are then used to calculate the oscillator strengths for all ground-state magnetic dipole absorption lines and the spontaneous emission rates for all magnetic dipole emission lines including transitions between excited states. A large number of strong magnetic dipole transitions are predicted throughout the visible and near-infrared spectrum, including many at longer wavelengths that would be ideal for experimental investigation of magnetic light-matter interactions with optical metamaterials and plasmonic antennas.
引用
收藏
页数:10
相关论文
共 83 条
[1]   Observation of Stimulated Emission of Surface Plasmon Polaritons [J].
Ambati, Muralidhar ;
Nam, Sung Hyun ;
Ulin-Avila, Erick ;
Genov, Dentcho A. ;
Bartal, Guy ;
Zhang, Xiang .
NANO LETTERS, 2008, 8 (11) :3998-4001
[2]   Cavity Plasmonics: Large Normal Mode Splitting of Electric and Magnetic Particle Plasmons Induced by a Photonic Microcavity [J].
Ameling, Ralf ;
Giessen, Harald .
NANO LETTERS, 2010, 10 (11) :4394-4398
[3]  
Andersen ML, 2011, NAT PHYS, V7, P215, DOI [10.1038/nphys1870, 10.1038/NPHYS1870]
[4]  
Barnard ES, 2011, NAT NANOTECHNOL, V6, P588, DOI [10.1038/nnano.2011.131, 10.1038/NNANO.2011.131]
[5]   Channel plasmon subwavelength waveguide components including interferometers and ring resonators [J].
Bozhevolnyi, SI ;
Volkov, VS ;
Devaux, E ;
Laluet, JY ;
Ebbesen, TW .
NATURE, 2006, 440 (7083) :508-511
[6]   Figures of merit for 2D surface plasmon waveguides and application to metal stripes [J].
Buckley, Robin ;
Berini, Pierre .
OPTICS EXPRESS, 2007, 15 (19) :12174-12182
[7]   Magnetic Light-Matter Interactions in a Photonic Crystal Nanocavity [J].
Burresi, M. ;
Kampfrath, T. ;
van Oosten, D. ;
Prangsma, J. C. ;
Song, B. S. ;
Noda, S. ;
Kuipers, L. .
PHYSICAL REVIEW LETTERS, 2010, 105 (12)
[8]   SPECTRAL INTENSITIES OF TRIVALENT LANTHANIDES AND ACTINIDES IN SOLUTION .2. PM3+ SM3+ EU3+ GD3+ TB3+ DY3+ AND HO3+ [J].
CARNALL, WT ;
FIELDS, PR ;
RAJNAK, K .
JOURNAL OF CHEMICAL PHYSICS, 1968, 49 (10) :4412-&
[9]   A SYSTEMATIC ANALYSIS OF THE SPECTRA OF THE LANTHANIDES DOPED INTO SINGLE-CRYSTAL LAF3 [J].
CARNALL, WT ;
GOODMAN, GL ;
RAJNAK, K ;
RANA, RS .
JOURNAL OF CHEMICAL PHYSICS, 1989, 90 (07) :3443-3457
[10]   Concentrating and Recycling Energy in Lanthanide Codopants for Efficient and Spectrally Pure Emission: The Case of NaYF4:Er3+/Tm3+ Upconverting Nanocrystals [J].
Chan, Emory M. ;
Gargas, Daniel J. ;
Schuck, P. James ;
Milliron, Delia J. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2012, 116 (35) :10561-10570