Values of "S," ⟨z1⟩, and ⟨z12⟩ for dosimetry using alpha-particle emitters

被引:17
作者
Stinchcomb, TG
Roeske, JC
机构
[1] De Paul Univ, Dept Phys, Chicago, IL 60614 USA
[2] Univ Chicago, Dept Radiat & Cellular Oncol, Chicago, IL 60637 USA
关键词
alpha-particle emitters; dosimetry; microdosimetry; radioimmunotherapy; MIRD;
D O I
10.1118/1.598701
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
In a recent paper [J. Nucl. Med. 38, 1923-1929 (1997)], the authors presented a dosimetry system which combines the computational ease of the MIRD schema with additional information provided by microdosimetry for use with alpha-particle emitters. In addition to the absorbed dose (average specific energy) to the targets (cell nuclei), this system gives the spread (standard deviation) in values of this specific energy received by individual targets. It also gives the fraction of targets receiving zero (or any number of) hits. In this paper, input quantities are presented for -alpha-particle energies and cell and nuclear sizes appropriate for the radionuclides being investigated The quantities include S values for the usual determination of the absorbed dose along with the microdosimetric quantities, [zr] and [z(2)(1)], the average and average square, respectively, of the single-hit specific energy. Using analytical procedures described previously [Med. Phys. 19, 1385-1393 (1992)], the single-hit distributions of specific energy are determined for the given alpha-particle energies, source locations, and target sizes. From these distributions, the values for the input quantities are calculated. Sources considered are (1) those located inside and on the surface of the target cell and an unbounded source in the medium external to the cell; (2) those distributed uniformly on either side of a plane boundary or on the surface of the plane with a spherical target at various distances from the plane; and (3) those located either inside or on the surface of a spherical boundary centered externally to the target, Examples show how the input quantities are used to provide the spread in specific-energy values and the probability of any number of hits for nuclei of cells exposed to these sources. Thus a complete micro-dosimetric analysis involving the calculation of multi-hit specific energy distributions is not necessary to provide this information. Such information may be useful in interpreting the biological response due to alpha-particle emitters. (C) 1999 American Assaciation of Physicists in Medicine. [50094-2405(99)03209-5].
引用
收藏
页码:1960 / 1971
页数:12
相关论文
共 14 条
[1]  
*AIP, A626032909 EPAPS EMP
[2]   Microdosimetry of astatine-211 using histological images: Application to bone marrow [J].
Akabani, G ;
Zalutsky, MR .
RADIATION RESEARCH, 1997, 148 (06) :599-607
[3]   Alpha- and beta-emitting radiolanthanides in targeted cancer therapy: The potential role of terbium-149 [J].
Allen, BJ ;
Blagojevic, N .
NUCLEAR MEDICINE COMMUNICATIONS, 1996, 17 (01) :40-47
[4]  
[Anonymous], 1970, P 2 S MICR EB HG BRU
[5]   BIOLOGICAL EFFECT OF PB-212 LOCALIZED IN THE NUCLEUS OF MAMMALIAN-CELLS - ROLE OF RECOIL ENERGY IN THE RADIOTOXICITY OF INTERNAL ALPHA-PARTICLE EMITTERS [J].
AZURE, MT ;
ARCHER, RD ;
SASTRY, KSR ;
RAO, DV ;
HOWELL, RW .
RADIATION RESEARCH, 1994, 140 (02) :276-283
[6]  
Charlton DE, 1998, INT J RADIAT BIOL, V74, P111, DOI 10.1080/095530098141771
[7]  
GODDU SM, 1994, J NUCL MED, V35, P303
[8]  
Goddu SM, 1997, MIRD CELLULAR S VALU
[9]  
*ICRU, 1993, 49 ICRU, P256
[10]  
Loevinger R., 1991, MIRD PRIMER ABSORBED