Tandem clusters of membrane proteins in complete genome sequences

被引:33
作者
Kihara, D [1 ]
Kanehisa, M [1 ]
机构
[1] Kyoto Univ, Inst Chem Res, Uji, Kyoto 6110011, Japan
关键词
D O I
10.1101/gr.10.6.731
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The distribution of genes coding for membrane proteins was investigated in 16 complete genomes: 4 archaea, 11 bacteria, and 1 eukaryote. Membrane proteins were identified by our new method of predicting transmembrane segments (Kihara et al. 1998) after the removal of amino-terminal signal peptides. Interestingly, about half of the membrane protein genes in each genome were found to be located next to another, Forming tandem clusters. Roughly 10%-30% of the tandem clusters were conserved among organisms, and most of the conserved tandem clusters belonged to one of the three functional groups, namely, transporters, the electron transport system, and cell motility. A tandem cluster sometimes contained paralogous membrane proteins, in which case the cluster size and the number of transmembrane segments could be related to a functional category, especially to transporters. In addition to the clustering of membrane proteins, the clustering of membrane proteins and ATP-binding proteins in the complete genomes was also analyzed. Although this clustering was not statistically significant, it was useful to identify candidate membrane protein partners of isolated ATP-binding protein components in the ABC transporters. Possible implications of tandem cluster organization of membrane protein genes are discussed including the complex formation and other functional coupling of protein products and the mechanism of protein translocation to the cell membrane.
引用
收藏
页码:731 / 743
页数:13
相关论文
共 63 条
[1]  
Arkin IT, 1997, PROTEINS, V28, P465, DOI 10.1002/(SICI)1097-0134(199708)28:4<465::AID-PROT1>3.0.CO
[2]  
2-9
[3]   Seeking an ancient enzyme in Methanococcus jannaschii using ORF, a program based on predicted secondary structure comparisons [J].
Aurora, R ;
Rose, GD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (06) :2818-2823
[4]   The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1998 [J].
Bairoch, A ;
Apweiler, R .
NUCLEIC ACIDS RESEARCH, 1998, 26 (01) :38-42
[5]   The complete genome sequence of Escherichia coli K-12 [J].
Blattner, FR ;
Plunkett, G ;
Bloch, CA ;
Perna, NT ;
Burland, V ;
Riley, M ;
ColladoVides, J ;
Glasner, JD ;
Rode, CK ;
Mayhew, GF ;
Gregor, J ;
Davis, NW ;
Kirkpatrick, HA ;
Goeden, MA ;
Rose, DJ ;
Mau, B ;
Shao, Y .
SCIENCE, 1997, 277 (5331) :1453-+
[6]   Predicting functions from protein sequences - where are the bottlenecks? [J].
Bork, P ;
Koonin, EV .
NATURE GENETICS, 1998, 18 (04) :313-318
[7]   How many membrane proteins are there? [J].
Boyd, D ;
Schierle, C ;
Beckwith, J .
PROTEIN SCIENCE, 1998, 7 (01) :201-205
[8]   GENE DUPLICATIONS IN HAEMOPHILUS-INFLUENZAE [J].
BRENNER, SE ;
HUBBARD, T ;
MURZIN, A ;
CHOTHIA, C .
NATURE, 1995, 378 (6553) :140-140
[9]   Exploring the new world of the genome with DNA microarrays [J].
Brown, PO ;
Botstein, D .
NATURE GENETICS, 1999, 21 (Suppl 1) :33-37
[10]   Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii [J].
Bult, CJ ;
White, O ;
Olsen, GJ ;
Zhou, LX ;
Fleischmann, RD ;
Sutton, GG ;
Blake, JA ;
FitzGerald, LM ;
Clayton, RA ;
Gocayne, JD ;
Kerlavage, AR ;
Dougherty, BA ;
Tomb, JF ;
Adams, MD ;
Reich, CI ;
Overbeek, R ;
Kirkness, EF ;
Weinstock, KG ;
Merrick, JM ;
Glodek, A ;
Scott, JL ;
Geoghagen, NSM ;
Weidman, JF ;
Fuhrmann, JL ;
Nguyen, D ;
Utterback, TR ;
Kelley, JM ;
Peterson, JD ;
Sadow, PW ;
Hanna, MC ;
Cotton, MD ;
Roberts, KM ;
Hurst, MA ;
Kaine, BP ;
Borodovsky, M ;
Klenk, HP ;
Fraser, CM ;
Smith, HO ;
Woese, CR ;
Venter, JC .
SCIENCE, 1996, 273 (5278) :1058-1073