Regularity results for two-dimensional flows of multiphase viscous fluids

被引:117
作者
Desjardins, B
机构
[1] CEREMADE, Université Paris Dauphine, 75775 Paris Cedex 16, Place de Lattre de Tassigny
关键词
D O I
10.1007/s002050050025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Global regularity results for weak solutions of the Navier-Stokes equations for two-dimensional multiphase incompressible fluids are proved under suitable conditions on the viscosity without assuming positive lower bounds on the initial density. As an application, we deduce regularity properties for the integral curves of the corresponding velocity field. Finally, we prove regularity results ''in the small'' for strong solutions.
引用
收藏
页码:135 / 158
页数:24
相关论文
共 21 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]   SMALL-TIME EXISTENCE FOR THE NAVIER-STOKES EQUATIONS WITH A FREE-SURFACE [J].
ALLAIN, G .
APPLIED MATHEMATICS AND OPTIMIZATION, 1987, 16 (01) :37-50
[3]  
ANTONTSEV S. N., 1990, Boundary values problems in mechanics of nonhomogeneous fluids
[4]   TRANSPORT-EQUATIONS RELATIVE TO NON-LIPSCHITZ VECTOR-FIELDS AND FLUID-MECHANICS [J].
BAHOURI, H ;
CHEMIN, JY .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 127 (02) :159-181
[5]  
COIFMAN R, 1993, J MATH PURE APPL, V72, P247
[6]  
DESJARDINS B, UNPUB LINEAR TRANSPO
[7]  
DESJARDINS B, UNPUB GLOBAL EXISTEN
[8]  
DESJARDINS B, UNPUB FEW REMARKS OR
[9]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547
[10]  
DIPERNA RJ, 1989, UNPUB SEM EDP 1988 1