The Calogero-Sutherland model and polynomials with prescribed symmetry

被引:68
作者
Baker, TH
Forrester, PJ
机构
[1] Department of Mathematics, University of Melbourne, Parkville
关键词
quantum many-body problem; Jack polynomials; integrable system;
D O I
10.1016/S0550-3213(97)00112-0
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The Schrodinger operators with exchange terms for certain Calogero-Sutherland quantum many-body systems have eigenfunctions which factor into the symmetric ground state and a multivariable polynomial. The polynomial tan be chosen to have a prescribed symmetry (i.e. be symmetric or antisymmetric) with respect to the interchange of some specified variables, For four particular Calogero-Sutherland systems we construct an eigenoperator for these polynomials which separates the eigenvalues and establishes orthogonality. In two of the cases this involves identifying new operators which commute with the corresponding Schrodinger operators, Tn each case we express a particular class of the polynomials with prescribed symmetry in a factored form involving the corresponding symmetric polynomials. (C) 1997 Published by Elsevier Science B.V.
引用
收藏
页码:682 / 716
页数:35
相关论文
共 28 条
[1]  
AWATA H, 1996, J PHYS A, V16, P3089
[2]  
BAKER TH, SOLVINT9608004, P47201
[3]  
BAKER TH, SOLVINT9609010, P47201
[4]  
BAKER TH, QALG9603005
[5]   CERTAIN HYPERGEOMETRIC-SERIES RELATED TO THE ROOT SYSTEM-BC [J].
BEERENDS, RJ ;
OPDAM, EM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 339 (02) :581-609
[6]   YANG-BAXTER EQUATION IN LONG-RANGE INTERACTING SYSTEMS [J].
BERNARD, D ;
GAUDIN, M ;
HALDANE, FDM ;
PASQUIER, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (20) :5219-5236
[7]   EXACT SOLUTION OF LONG-RANGE INTERACTING SPIN CHAINS WITH BOUNDARIES [J].
BERNARD, D ;
PASQUIER, V ;
SERBAN, D .
EUROPHYSICS LETTERS, 1995, 30 (05) :301-306
[8]   A UNIFICATION OF KNIZHNIK-ZAMOLODCHIKOV AND DUNKL OPERATORS VIA AFFINE HECKE ALGEBRAS [J].
CHEREDNIK, I .
INVENTIONES MATHEMATICAE, 1991, 106 (02) :411-431
[10]   INTEGRAL-KERNELS WITH REFLECTION GROUP INVARIANCE [J].
DUNKL, CF .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1991, 43 (06) :1213-1227