Engagement of rat striatal neurons by cortical epileptiform activity investigated with paired recordings

被引:9
作者
Bracci, E [1 ]
Centonze, D
Bernardi, G
Calabresi, P
机构
[1] Univ Manchester, Dept Optometry & Neurosci, Manchester M60 1QD, Lancs, England
[2] Univ Roma Tor Vergata, Dipartimento Neurosci, Neurol Clin, I-00133 Rome, Italy
[3] Fdn Santa Lucia, I-00179 Rome, Italy
关键词
D O I
10.1152/jn.00585.2004
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The striatum is thought to play an important role in the spreading of epilepsy from cortical areas to deeper brain structures, but this issue has not been addressed with intracellular techniques. Paired recordings were used to assess the impact of cortical epileptiform activity on striatal neurons in brain slices. Bath-application of 4-amynopyridine (100 muM) and bicuculline (20 muM) induced synchronized bursts in all pairs of cortical neurons (less than or equal to5 mm apart) in coronal, sagittal, and oblique slices (which preserve connections from the medial agranular cortex to the striatum). Under these conditions, striatal medium spiny neurons (MSs) displayed a strong increased spontaneous glutamatergic activity. This activity was not correlated to the cortical bursts and was asynchronous in pairs of MSs. Sporadic, large-amplitude synchronous depolarizations also occurred in MSs. These events were simultaneously detected in glial cells, suggesting that they were accompanied by considerable increases in extracellular potassium. In oblique slices, cortically driven bursts were also observed in MSs. These events were synchronized to cortical epileptiform bursts, depended on non-N-methyl-D-aspartate (NMDA) glutamate receptors, and persisted in the cortex, but not in the striatum, after disconnection of the two structures. During these bursts, MS membrane potential shifted to a depolarized value (59+/-4 mV) on which an irregular waveform, occasionally eliciting spikes, was superimposed. Thus synchronous activation of a limited set of corticostriatal afferents can powerfully control MSs. Cholinergic interneurons located <120 mu m from simultaneously recorded MSs, did not display cortically driven bursts, suggesting that these cells are much less easily engaged by cortical epileptiform activity.
引用
收藏
页码:2725 / 2737
页数:13
相关论文
共 79 条
[1]   Spontaneous and artificial activation of neocortical seizures [J].
Amzica, F ;
Steriade, M .
JOURNAL OF NEUROPHYSIOLOGY, 1999, 82 (06) :3123-3138
[2]   Neuronal and glial membrane potentials during sleep and paroxysmal oscillations in the neocortex [J].
Amzica, F ;
Steriade, M .
JOURNAL OF NEUROSCIENCE, 2000, 20 (17) :6648-6665
[3]   Spreading depression: Imaging and blockade in the rat neocortical brain slice [J].
Anderson, TR ;
Andrew, RD .
JOURNAL OF NEUROPHYSIOLOGY, 2002, 88 (05) :2713-2725
[4]   Tonically active neurons in the primate striatum and their role in the processing of information about motivationally relevant events [J].
Apicella, P .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2002, 16 (11) :2017-2026
[5]   Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro [J].
Avoli, M ;
D'Antuono, M ;
Louvel, J ;
Köhling, R ;
Biagini, G ;
Pumain, R ;
D'Arcangelo, G ;
Tancredi, V .
PROGRESS IN NEUROBIOLOGY, 2002, 68 (03) :167-207
[6]   Two dynamically distinct inhibitory networks in layer 4 of the neocortex [J].
Beierlein, M ;
Gibson, JR ;
Connors, BW .
JOURNAL OF NEUROPHYSIOLOGY, 2003, 90 (05) :2987-3000
[7]   SYNAPTIC INPUT AND OUTPUT OF PARVALBUMIN-IMMUNOREACTIVE NEURONS IN THE NEOSTRIATUM OF THE RAT [J].
BENNETT, BD ;
BOLAM, JP .
NEUROSCIENCE, 1994, 62 (03) :707-719
[8]   Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons [J].
Bennett, BD ;
Callaway, JC ;
Wilson, CJ .
JOURNAL OF NEUROSCIENCE, 2000, 20 (22) :8493-8503
[9]  
BENNETT BD, 2000, BRAIN DYNAMICS STRIA
[10]   Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network [J].
Bevan, MD ;
Magill, PJ ;
Terman, D ;
Bolam, JP ;
Wilson, CJ .
TRENDS IN NEUROSCIENCES, 2002, 25 (10) :525-531