Parallel analysis with optically gated sample introduction on a multichannel microchip

被引:26
作者
Xu, XM [1 ]
Roddy, TP [1 ]
Lapos, JA [1 ]
Ewing, AG [1 ]
机构
[1] Penn State Univ, Dept Chem, Davey Lab 152, University Pk, PA 16802 USA
关键词
D O I
10.1021/ac025773f
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
As an alternative to the T-type injection on microchips, optically gated sample introduction previously has been demonstrated to provide fast, serial, and reproducible injections on a single-channel microchip. Here, the ability to perform high throughput, multichannel analysis with optically gated sample introduction is described using a voice coil actuator. The microchip is fixed on a stage, which moves back and forth via the voice coil actuator, scanning two laser beams across the channels on the microchip. For parallel analysis on a multichannel microchip, both the gating beam and the probe beam are scanned at 10 Hz to perform multiple injections and parallel detection: Simultaneous, fast separations of 4-choloro-7-nitrobenzofurazan (NBD)-labeled amino acids are demonstrated in multiple channels on a microchip. Serial separations of different samples in multiple channels are also reported. Optically gated sample introduction on multiple, parallel channels shows the potential for high-speed, high-throughput separations that are easily automated by using a single electronic shutter.
引用
收藏
页码:5517 / 5522
页数:6
相关论文
共 32 条
[1]  
Bruin GJM, 2000, ELECTROPHORESIS, V21, P3931, DOI 10.1002/1522-2683(200012)21:18<3931::AID-ELPS3931>3.0.CO
[2]  
2-M
[3]   A prototype two-dimensional capillary electrophoresis system fabricated in poly(dimethylsiloxane) [J].
Chen, XX ;
Wu, HK ;
Mao, CD ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 2002, 74 (08) :1772-1778
[4]   Development of a multichannel microfluidic analysis system employing affinity capillary electrophoresis for immunoassay [J].
Cheng, SB ;
Skinner, CD ;
Taylor, J ;
Attiya, S ;
Lee, WE ;
Picelli, G ;
Harrison, DJ .
ANALYTICAL CHEMISTRY, 2001, 73 (07) :1472-1479
[5]  
Dolník V, 2000, ELECTROPHORESIS, V21, P41, DOI 10.1002/(SICI)1522-2683(20000101)21:1<41::AID-ELPS41>3.0.CO
[6]  
2-7
[7]   Integrated chip-based capillary electrophoresis [J].
Effenhauser, CS ;
Bruin, GJM ;
Paulus, A .
ELECTROPHORESIS, 1997, 18 (12-13) :2203-2213
[8]   Nanoflow solvent gradient delivery from a microfabricated device for protein identifications by electrospray ionization mass spectrometry [J].
Figeys, D ;
Aebersold, R .
ANALYTICAL CHEMISTRY, 1998, 70 (18) :3721-3727
[9]  
Gottlieb I., 1994, Electric motors and control techniques
[10]   CAPILLARY ARRAY ELECTROPHORESIS USING LASER-EXCITED CONFOCAL FLUORESCENCE DETECTION [J].
HUANG, XHC ;
QUESADA, MA ;
MATHIES, RA .
ANALYTICAL CHEMISTRY, 1992, 64 (08) :967-972