Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications

被引:892
作者
Li, Mo
Tang, H. X.
Roukes, M. L.
机构
[1] CALTECH, Kavli Nanosci Inst, Pasadena, CA 91125 USA
[2] CALTECH, Dept Phys, Pasadena, CA 91125 USA
[3] CALTECH, Dept Appl Phys, Pasadena, CA 91125 USA
[4] CALTECH, Dept Bioengn, Pasadena, CA 91125 USA
关键词
D O I
10.1038/nnano.2006.208
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Scanning probe microscopies (SPM) and cantilever-based sensors generally use low-frequency mechanical devices of microscale dimensions or larger. Almost universally, off-chip methods are used to sense displacement in these devices, but this approach is not suitable for nanoscale devices. Nanoscale mechanical sensors offer a greatly enhanced performance that is unattainable with microscale devices. Here we describe the fabrication and operation of self-sensing nanocantilevers with fundamental mechanical resonances up to very high frequencies ( VHF). These devices use integrated electronic displacement transducers based on piezoresistive thin metal films, permitting straightforward and optimal nanodevice readout. This non-optical transduction enables applications requiring previously inaccessible sensitivity and bandwidth, such as fast SPM and VHF force sensing. Detection of 127 MHz cantilever vibrations is demonstrated with a thermomechanical-noise- limited displacement sensitivity of 39 fm Hz(-1/2). Our smallest devices, with dimensions approaching the mean free path at atmospheric pressure, maintain high resonance quality factors in ambient conditions. This enables chemisorption measurements in air at room temperature, with unprecedented mass resolution less than 1 attogram (10(-18) g).
引用
收藏
页码:114 / 120
页数:7
相关论文
共 35 条
[1]   MICROFABRICATION OF CANTILEVER STYLI FOR THE ATOMIC FORCE MICROSCOPE [J].
ALBRECHT, TR ;
AKAMINE, S ;
CARVER, TE ;
QUATE, CF .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1990, 8 (04) :3386-3396
[2]  
Arlett J., 2005, NOBEL S
[3]   Self-sensing micro- and nanocantilevers with attonewton-scale force resolution [J].
Arlett, J. L. ;
Maloney, J. R. ;
Gudlewski, B. ;
Muluneh, M. ;
Roukes, M. L. .
NANO LETTERS, 2006, 6 (05) :1000-1006
[4]   A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout [J].
Battiston, FM ;
Ramseyer, JP ;
Lang, HP ;
Baller, MK ;
Gerber, C ;
Gimzewski, JK ;
Meyer, E ;
Güntherodt, HJ .
SENSORS AND ACTUATORS B-CHEMICAL, 2001, 77 (1-2) :122-131
[5]   Effect of fluids on the Q factor and resonance frequency of oscillating micrometer and nanometer scale beams -: art. no. 036307 [J].
Bhiladvala, RB ;
Wang, ZJ .
PHYSICAL REVIEW E, 2004, 69 (03) :036307-1
[6]   ATOMIC FORCE MICROSCOPE [J].
BINNIG, G ;
QUATE, CF ;
GERBER, C .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :930-933
[7]   ATOMIC RESOLUTION WITH ATOMIC FORCE MICROSCOPE [J].
BINNIG, G ;
GERBER, C ;
STOLL, E ;
ALBRECHT, TR ;
QUATE, CF .
EUROPHYSICS LETTERS, 1987, 3 (12) :1281-1286
[8]   A nanometre-scale mechanical electrometer [J].
Cleland, AN ;
Roukes, ML .
NATURE, 1998, 392 (6672) :160-162
[9]  
COMS AB, FEML 3 1
[10]   Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems [J].
Ekinci, KL ;
Yang, YT ;
Roukes, ML .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (05) :2682-2689