Brain Networks Involved in Early versus Late Response Anticipation and Their Relation to Conflict Processing

被引:34
作者
Luetcke, Henry [1 ]
Gevensleben, Holger [2 ]
Albrecht, Bjoern [2 ]
Frahm, Jens [1 ]
机构
[1] Max Planck Inst Biophys Chem, Biomed NMR Forsch GmbH, D-37077 Gottingen, Germany
[2] Univ Gottingen, D-37077 Gottingen, Germany
关键词
CONTINGENT NEGATIVE-VARIATION; INDEPENDENT COMPONENT ANALYSIS; VARIATION CNV; CORTEX; MOTOR; POTENTIALS; ATTENTION; ROBUST; ACTIVATION; DISEASE;
D O I
10.1162/jocn.2008.21165
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Previous electrophysiological studies have clearly identified separable neural events underlying early and late components of response anticipation. Functional neuroimaging studies, however, have so far failed to account for this separation. Here, we performed functional magnetic resonance imaging (fMRI) of an anticipation paradigm in 12 healthy adult subjects that reliably produced early and late expectancy waves in the electroencephalogram. We furthermore compared fMRI activations elicited during early and late anticipation to those associated with response conflict. Our results demonstrate the existence of distinct cortical and subcortical brain regions underlying early and late anticipation. Although late anticipatory behavior was associated with activations in dorsal ACC, frontal cortex, and thalamus, brain responses linked to the early expectancy wave were localized mainly in motor and premotor cortical areas as well as the caudate nucleus. Additionally, late anticipation was associated with increased activity in midbrain dopaminergic nuclei, very likely corresponding to the substantia nigra. Furthermore, whereas regions involved in late anticipation proved to be very similar to activations elicited by response conflict, this was not the case for early anticipation. The current study supports a distinction between early and late anticipatory processes, in line with a plethora of neurophysiological work, and for the first time describes the brain structures differentially involved in these processes.
引用
收藏
页码:2172 / 2184
页数:13
相关论文
共 55 条
[1]   The variability of human, BOLD hemodynamic responses [J].
Aguirre, GK ;
Zarahn, E ;
D'Esposito, M .
NEUROIMAGE, 1998, 8 (04) :360-369
[2]   General multilevel linear modeling for group analysis in FMRI [J].
Beckmann, CF ;
Jenkinson, M ;
Smith, SM .
NEUROIMAGE, 2003, 20 (02) :1052-1063
[3]   Tensorial extensions of independent component analysis for multisubject FMRI analysis [J].
Beckmann, CF ;
Smith, SM .
NEUROIMAGE, 2005, 25 (01) :294-311
[4]   Probabilistic independent component analysis for functional magnetic resonance imaging [J].
Beckmann, CF ;
Smith, SA .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (02) :137-152
[5]   Specific task anticipation versus unspecific orienting reaction during early contingent negative variation [J].
Bender, S ;
Resch, F ;
Weisbrod, M ;
Oelkers-Ax, R .
CLINICAL NEUROPHYSIOLOGY, 2004, 115 (08) :1836-1845
[6]   SLOW POTENTIALS OF THE CEREBRAL-CORTEX AND BEHAVIOR [J].
BIRBAUMER, N ;
ELBERT, T ;
CANAVAN, AGM ;
ROCKSTROH, B .
PHYSIOLOGICAL REVIEWS, 1990, 70 (01) :1-41
[7]   Distribution of cortical activation during visuospatial n-back tasks as revealed by functional magnetic resonance imaging [J].
Carlson, S ;
Martinkauppi, S ;
Rämä, P ;
Salli, E ;
Korvenoja, A ;
Aronen, HJ .
CEREBRAL CORTEX, 1998, 8 (08) :743-752
[8]   CORTICAL SLOW-WAVE AND CARDIAC RATE RESPONSES IN STIMULUS ORIENTATION AND REACTION TIME CONDITIONS [J].
CONNOR, WH ;
LANG, PJ .
JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 1969, 82 (02) :310-&
[9]   Differential responses in human striatum and prefrontal cortex to changes in object and rule relevance [J].
Cools, R ;
Clark, L ;
Robbins, TW .
JOURNAL OF NEUROSCIENCE, 2004, 24 (05) :1129-1135
[10]   Control of goal-directed and stimulus-driven attention in the brain [J].
Corbetta, M ;
Shulman, GL .
NATURE REVIEWS NEUROSCIENCE, 2002, 3 (03) :201-215