Improved lithium-sulfur cells with a treated carbon paper interlayer

被引:228
作者
Zu, Chenxi
Su, Yu-Sheng
Fu, Yongzhu
Manthiram, Arumugam [1 ]
机构
[1] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
关键词
LI-ION; BATTERY; CATHODE; PERFORMANCE; DISCHARGE; POLYSULFIDES; CHEMISTRY;
D O I
10.1039/c2cp43394j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A simple, low-cost modification of lithium-sulfur (Li-S) cells by placing a treated carbon paper between the sulfur electrode and the separator has been investigated to significantly improve the performance of Li-S cells. The treated carbon paper was prepared by an alcohol-alkaline/thermal treatment of a commercial Toray carbon paper, introducing hydroxyl functional groups and micro-cracks on the carbon fibers in the carbon paper, which enhances the hydrophilicity and increases surface areas of the carbon paper matrix. The modified Li-S cells deliver a higher initial capacity of 1651 mAh g(-1) at 1.5-2.8 V at a rate of C/5 compared to the cells without any interlayer or with an untreated carbon paper interlayer. The cells with the treated carbon paper offer additional improvement in performance when the discharge cut-off voltage is raised to 1.8 V: 1057, 1002, and 929 mAh g(-1) after 100 cycles, respectively, at C/5, C/2, and 1 C rates. The improved cell performance is attributed to the 3D architecture of the carbon paper interlayer, serving as a conductive skeleton for trapping and depositing dissolved sulfur-containing active materials, as confirmed by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The novel configuration presented here offers a low-cost approach to overcome the persistent problems of Li-S cells.
引用
收藏
页码:2291 / 2297
页数:7
相关论文
共 38 条
[1]   Li/S fundamental chemistry and application to high-performance rechargeable batteries [J].
Akridge, JR ;
Mikhaylik, YV ;
White, N .
SOLID STATE IONICS, 2004, 175 (1-4) :243-245
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   Lithium/Sulfur Cell Discharge Mechanism: An Original Approach for Intermediate Species Identification [J].
Barchasz, Celine ;
Molton, Florian ;
Duboc, Carole ;
Lepretre, Jean-Claude ;
Patoux, Sebastien ;
Alloin, Fannie .
ANALYTICAL CHEMISTRY, 2012, 84 (09) :3973-3980
[4]   Energy storage beyond the horizon: Rechargeable lithium batteries [J].
Bruce, Peter G. .
SOLID STATE IONICS, 2008, 179 (21-26) :752-760
[5]   Electrochemical impedance analysis for lithium ion intercalation into graphitized carbons [J].
Chang, YC ;
Sohn, HJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (01) :50-58
[6]   A hierarchical architecture S/MWCNT nanomicrosphere with large pores for lithium sulfur batteries [J].
Chen, Jia-jia ;
Zhang, Qian ;
Shi, Yi-ning ;
Qin, Lin-lin ;
Cao, Yong ;
Zheng, Ming-sen ;
Dong, Quan-feng .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (16) :5376-5382
[7]   Rechargeable lithium sulfur battery - I. Structural change of sulfur cathode during discharge and charge [J].
Cheon, SE ;
Ko, KS ;
Cho, JH ;
Kim, SW ;
Chin, EY ;
Kim, HT .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (06) :A796-A799
[8]  
Coates J., 2000, ENCY ANAL CHEM, V12, P10815, DOI DOI 10.1002/9780470027318.A5606
[9]  
Dean J.A., 1985, LANGES HDB CHEM, V13
[10]   Positive Electrode Materials for Li-Ion and Li-Batteries [J].
Ellis, Brian L. ;
Lee, Kyu Tae ;
Nazar, Linda F. .
CHEMISTRY OF MATERIALS, 2010, 22 (03) :691-714