The use of machine learning for the identification of peripheral artery disease and future mortality risk

被引:105
作者
Ross, Elsie Gyang [1 ]
Shah, Nigam H. [2 ]
Dalman, Ronald L. [1 ]
Nead, Kevin T. [3 ]
Cooke, John P. [4 ,5 ]
Leeper, Nicholas J. [1 ]
机构
[1] Stanford Hlth Care, Div Vasc Surg, Stanford, CA USA
[2] Stanford Univ, Ctr Biomed Informat, Stanford, CA 94305 USA
[3] Univ Penn, Dept Radiat Oncol, Philadelphia, PA 19104 USA
[4] Houston Methodist Res Inst, Dept Cardiovasc Sci, Houston, TX USA
[5] Houston Methodist DeBakey Heart & Vasc Ctr, Ctr Cardiovasc Regenerat, Houston, TX USA
关键词
ANKLE-BRACHIAL INDEX; PREDICTION; SCORE; PERFORMANCE; PREVALENCE; FRAMINGHAM;
D O I
10.1016/j.jvs.2016.04.026
中图分类号
R61 [外科手术学];
学科分类号
摘要
Objective: A key aspect of the precision medicine effort is the development of informatics tools that can analyze and interpret "big data" sets in an automated and adaptive fashion while providing accurate and actionable clinical information. The aims of this study were to develop machine learning algorithms for the identification of disease and the prognostication of mortality risk and to determine whether such models perform better than classical statistical analyses. Methods: Focusing on peripheral artery disease (PAD), patient data were derived from a prospective, observational study of 1755 patients who presented for elective coronary angiography. We employed multiple supervised machine learning algorithms and used diverse clinical, demographic, imaging, and genomic information in a hypothesis-free manner to build models that could identify patients with PAD and predict future mortality. Comparison was made to standard stepwise linear regression models. Results: Our machine-learned models outperformed stepwise logistic regression models both for the identification of patients with PAD (area under the curve, 0.87 vs 0.76, respectively; P = .03) and for the prediction of future mortality (area under the curve, 0.76 vs 0.65, respectively; P = .10). Both machine-learned models were markedly better calibrated than the stepwise logistic regression models, thus providing more accurate disease and mortality risk estimates. Conclusions: Machine learning approaches can produce more accurate disease classification and prediction models. These tools may prove clinically useful for the automated identification of patients with highly morbid diseases for which aggressive risk factor management can improve outcomes.
引用
收藏
页码:1515 / +
页数:11
相关论文
共 47 条
[1]   Three-year follow-up and event rates in the international REduction of Atherothrombosis for Continued Health Registry [J].
Alberts, Mark J. ;
Bhatt, Deepak L. ;
Mas, Jean-Louis ;
Ohman, E. Magnus ;
Hirsch, Alan T. ;
Roether, Joachim ;
Salette, Genevieve ;
Goto, Shinya ;
Smith, Sidney C., Jr. ;
Liau, Chiau-Suong ;
Wilson, Peter W. F. ;
Steg, Ph. Gabriel .
EUROPEAN HEART JOURNAL, 2009, 30 (19) :2318-2326
[2]   Performance of four current risk algorithms in predicting cardiovascular events in patients with early rheumatoid arthritis [J].
Arts, E. E. A. ;
Popa, C. ;
Den Broeder, A. A. ;
Semb, A. G. ;
Toms, T. ;
Kitas, G. D. ;
van Riel, P. L. ;
Fransen, J. .
ANNALS OF THE RHEUMATIC DISEASES, 2015, 74 (04) :668-674
[3]   Preemptive Genotyping for Personalized Medicine: Design of the Right Drug, Right Dose, Right Time-Using Genomic Data to Individualize Treatment Protocol [J].
Bielinski, Suzette J. ;
Olson, Janet E. ;
Pathak, Jyotishman ;
Weinshilboum, Richard M. ;
Wang, Liewei ;
Lyke, Kelly J. ;
Ryu, Euijung ;
Targonski, Paul V. ;
Van Norstrand, Michael D. ;
Hathcock, Matthew A. ;
Takahashi, Paul Y. ;
McCormick, Jennifer B. ;
Johnson, Kiley J. ;
Maschke, Karen J. ;
Vitek, Carolyn R. Rohrer ;
Ellingson, Marissa S. ;
Wieben, Eric D. ;
Farrugia, Gianrico ;
Morrisette, Jody A. ;
Kruckeberg, Keri J. ;
Bruflat, Jamie K. ;
Peterson, Lisa M. ;
Blommel, Joseph H. ;
Skierka, Jennifer M. ;
Ferber, Matthew J. ;
Black, John L. ;
Baudhuin, Linnea M. ;
Klee, Eric W. ;
Ross, Jason L. ;
Veldhuizen, Tamra L. ;
Schultz, Cloann G. ;
Caraballo, Pedro J. ;
Freimuth, Robert R. ;
Chute, Christopher G. ;
Kullo, Iftikhar J. .
MAYO CLINIC PROCEEDINGS, 2014, 89 (01) :25-33
[4]   Pharmacological Treatment and Current Management of Peripheral Artery Disease [J].
Bonaca, Marc P. ;
Creager, Mark A. .
CIRCULATION RESEARCH, 2015, 116 (09) :1579-1598
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]   A Clinical Database-Driven Approach to Decision Support: Predicting Mortality Among Patients with Acute Kidney Injury [J].
Celi, Leo Anthony G. ;
Tang, Robin J. ;
Villarroel, Mauricio C. ;
Davidzon, Guido A. ;
Lester, William T. ;
Chueh, Henry C. .
JOURNAL OF HEALTHCARE ENGINEERING, 2011, 2 (01) :97-109
[7]   Clinical and socioeconomic factors associated with unrecognized peripheral artery disease [J].
Chang, Peter ;
Nead, Kevin T. ;
Olin, Jeffrey W. ;
Cooke, John P. ;
Leeper, Nicholas J. .
VASCULAR MEDICINE, 2014, 19 (04) :289-296
[8]   Epidemiology of Peripheral Artery Disease [J].
Criqui, Michael H. ;
Aboyans, Victor .
CIRCULATION RESEARCH, 2015, 116 (09) :1509-1526
[9]   An evidence-based score to detect prevalent peripheral artery disease (PAD) [J].
Duval, Sue ;
Massaro, Joseph M. ;
Jaff, Michael R. ;
Boden, William E. ;
Alberts, Mark J. ;
Califf, Robert M. ;
Eagle, Kim A. ;
D'Agostino, Ralph B., Sr. ;
Pedley, Alison ;
Fonarow, Gregg C. ;
Murabito, Joanne M. ;
Steg, P. Gabriel ;
Bhatt, Deepak L. ;
Hirsch, Alan T. .
VASCULAR MEDICINE, 2012, 17 (05) :342-351
[10]   Measuring the Modified Early Warning Score and the Rothman Index: Advantages of Utilizing the Electronic Medical Record in an Early Warning System [J].
Finlay, G. Duncan ;
Rothman, Michael J. ;
Smith, Robert A. .
JOURNAL OF HOSPITAL MEDICINE, 2014, 9 (02) :116-119