Mechanism for radical cation transport in duplex DNA oligonucleotides

被引:85
作者
Liu, CS [1 ]
Hernandez, R [1 ]
Schuster, GB [1 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
关键词
D O I
10.1021/ja0378254
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We investigated the photoinduced one-electron oxidation of a series of DNA oligomers having a covalently linked anthraquinone group (AQ) and containing [(A)(n)GG](m) or [(T)(n)GG](m) segments. These oligomers have m GG steps, where m = 4 or 6, separated by (A)(n) or (T)(n) segments, where n = 1-7 for the (A)(n) set and 1-5 for the (T)(n) set. Irradiation with UV light that is absorbed by the AQ causes injection of a radical cation into the DNA. The radical cation migrates through the DNA, causing chemical reaction, primarily at GG steps, that leads to strand cleavage after piperidine treatment. The uniform, systematic structure of the DNA oligonucleotides investigated permits the numerical solution of a kinetic scheme that models these reactions. This analysis yields two rate constants, k(hop), for hopping of the radical cation from one site to adjacent sites, and k(trap), for irreversible reaction of the radical cation with H2O or O-2. Analysis of these findings indicates that radical cation hopping in these duplex DNA oligomers is a process that occurs on a microsecond time scale. The value of k(hop) depends on the number of base pairs in the (A)(n) and (T)(n) segments in a systematic way. We interpret these results in terms of a thermally activated adiabatic mechanism for radical cation hopping that we identify as phonon-assisted polaron hopping.
引用
收藏
页码:2877 / 2884
页数:8
相关论文
共 62 条
[1]   IMPROVED BACTERIAL TEST SYSTEM FOR DETECTION AND CLASSIFICATION OF MUTAGENS AND CARCINOGENS [J].
AMES, BN ;
LEE, FD ;
DURSTON, WE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1973, 70 (03) :782-786
[2]   CATIONIC ANTHRAQUINONE DERIVATIVES AS CATALYTIC DNA PHOTONUCLEASES - MECHANISMS FOR DNA-DAMAGE AND QUINONE RECYCLING [J].
ARMITAGE, B ;
YU, CJ ;
DEVADOSS, C ;
SCHUSTER, GB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1994, 116 (22) :9847-9859
[3]   Effect of base sequence and hydration on the electronic and hole transport properties of duplex DNA: Theory and experiment [J].
Barnett, RN ;
Cleveland, CL ;
Landman, U ;
Boone, E ;
Kanvah, S ;
Schuster, GB .
JOURNAL OF PHYSICAL CHEMISTRY A, 2003, 107 (18) :3525-3537
[4]   Charge migration in DNA: Ion-gated transport [J].
Barnett, RN ;
Cleveland, CL ;
Joy, A ;
Landman, U ;
Schuster, GB .
SCIENCE, 2001, 294 (5542) :567-571
[5]   Elementary steps for charge transport in DNA: thermal activation vs. tunneling [J].
Berlin, YA ;
Burin, AL ;
Ratner, MA .
CHEMICAL PHYSICS, 2002, 275 (1-3) :61-74
[6]   Nucleic acids: theory and computer simulation, Y2K [J].
Beveridge, DL ;
McConnell, KJ .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2000, 10 (02) :182-196
[7]   Energetic control and kinetics of hole migration in DNA [J].
Bixon, M ;
Jortner, J .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (16) :3906-3913
[8]   Charge transport in DNA via thermally induced hopping [J].
Bixon, M ;
Jortner, J .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (50) :12556-12567
[9]   Long-range charge hopping in DNA [J].
Bixon, M ;
Giese, B ;
Wessely, S ;
Langenbacher, T ;
Michel-Beyerle, ME ;
Jortner, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (21) :11713-11716
[10]   Repair of 8-oxoguanine in Saccharomyces cerevisiae:: Interplay of DNA repair and replication mechanisms [J].
Boiteux, S ;
Gellon, L ;
Guibourt, N .
FREE RADICAL BIOLOGY AND MEDICINE, 2002, 32 (12) :1244-1253