Model hierarchies in edge-based compartmental modeling for infectious disease spread

被引:23
作者
Miller, Joel C. [1 ,2 ,3 ,4 ]
Volz, Erik M. [5 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Biol, University Pk, PA 16802 USA
[3] NIH, Fogarty Int Ctr, Bethesda, MD 20892 USA
[4] Harvard Univ, Sch Publ Hlth, Dept Epidemiol, Ctr Communicable Dis Dynam, Boston, MA 02115 USA
[5] Univ Michigan, Dept Epidemiol, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院;
关键词
CONTACT NETWORK; DYNAMICS;
D O I
10.1007/s00285-012-0572-3
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider the family of edge-based compartmental models for epidemic spread developed in Miller et al. (J R Soc Interface 9(70):890-906, 2012). These models allow for a range of complex behaviors, and in particular allow us to explicitly incorporate duration of a contact into our mathematical models. Our focus here is to identify conditions under which simpler models may be substituted for more detailed models, and in so doing we define a hierarchy of epidemic models. In particular we provide conditions under which it is appropriate to use the standard mass action SIR model, and we show what happens when these conditions fail. Using our hierarchy, we provide a procedure leading to the choice of the appropriate model for a given population. Our result about the convergence of models to the mass action model gives clear, rigorous conditions under which the mass action model is accurate.
引用
收藏
页码:869 / 899
页数:31
相关论文
共 24 条
[1]  
ANDERSON R M, 1991
[2]   The phase transition in inhomogeneous random graphs [J].
Bollobas, Bela ;
Janson, Svante ;
Riordan, Oliver .
RANDOM STRUCTURES & ALGORITHMS, 2007, 31 (01) :3-122
[3]   Generating simple random graphs with prescribed degree distribution [J].
Britton, Tom ;
Deijfen, Maria ;
Martin-Loeff, Anders .
JOURNAL OF STATISTICAL PHYSICS, 2006, 124 (06) :1377-1397
[4]  
CHUNG F., 2002, Ann. Comb., V6, P125, DOI [10.1007/PL00012580, DOI 10.1007/PL00012580]
[5]   Contribution to the mathematical theory of epidemics [J].
Kermack, WO ;
McKendrick, AG .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER, 1927, 115 (772) :700-721
[6]   THE TRANSMISSION DYNAMICS OF HUMAN IMMUNODEFICIENCY VIRUS (HIV) [J].
MAY, RM ;
ANDERSON, RM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES B-BIOLOGICAL SCIENCES, 1988, 321 (1207) :565-607
[7]  
May RM, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.066112
[8]  
Meyers LA, 2007, B AM MATH SOC, V44, P63
[9]  
Miller JC, 2011, EDGE BASED COM UNPUB
[10]   Epidemic size and probability in populations with heterogeneous infectivity and susceptibility [J].
Miller, Joel C. .
PHYSICAL REVIEW E, 2007, 76 (01)