One-step synthesis of hollow porous Fe3O4 beads-reduced graphene oxide composites with superior battery performance

被引:107
作者
Chen, Yu [1 ]
Song, Bohang [2 ]
Tang, Xiaosheng [1 ]
Lu, Li [2 ]
Xue, Junmin [1 ]
机构
[1] Natl Univ Singapore, Dept Mat Sci & Engn, Singapore 117576, Singapore
[2] Natl Univ Singapore, Dept Mech Engn, Singapore 117576, Singapore
关键词
LITHIUM-ION BATTERIES; CAPACITY ANODE MATERIAL; REVERSIBLE CAPACITY; CYCLIC PERFORMANCE; HIGH-POWER; STORAGE; NANOPARTICLES; LI; ELECTRODES; NANOSHEETS;
D O I
10.1039/c2jm32057f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report the synthesis of a novel hollow porous Fe3O4 bead-rGO composite structure for lithium ion battery anode application via a facile solvothermal route. The formation of hollow porous Fe3O4 beads and reduction of graphene oxide (GO) into rGO were accomplished in one step by using ethylene glycol (EG) as a reducing agent. In this composite structure, the hollow porous Fe3O4 beads were either chemically attached or tightly wrapped with rGO sheets, leading to a strong synergistic effect between them. As a result, the obtained Fe3O4-rGO composite electrodes could deliver a reversible capacity of 1039 mA h g(-1) after 170 cycles between 3 V and 50 mV at a current density of 100 mA g(-1), with an increment of 30% compared to their initial reversible capacity, demonstrating their superior cycling stability.
引用
收藏
页码:17656 / 17662
页数:7
相关论文
共 39 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Enhanced rate performance and cyclic stability of Fe3O4-graphene nanocomposites for Li ion battery anodes [J].
Behera, Shantanu K. .
CHEMICAL COMMUNICATIONS, 2011, 47 (37) :10371-10373
[3]   Single-layer MoS2/graphene dispersed in amorphous carbon: towards high electrochemical performances in rechargeable lithium ion batteries [J].
Chang, Kun ;
Chen, Weixiang .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (43) :17175-17184
[4]   Graphene-Encapsulated Hollow Fe3O4 Nanoparticle Aggregates As a High-Performance Anode Material for Lithium Ion Batteries [J].
Chen, Dongyun ;
Ji, Ge ;
Ma, Yue ;
Lee, Jim Yang ;
Lu, Jianmei .
ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (08) :3078-3083
[5]   Microwave-assisted synthesis of a Co3O4-graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries [J].
Chen, Shuang Qiang ;
Wang, Yong .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (43) :9735-9739
[6]   Self-Assembly and Embedding of Nanoparticles by In Situ Reduced Graphene for Preparation of a 3D Graphene/Nanoparticle Aerogel [J].
Chen, Wufeng ;
Li, Sirong ;
Chen, Chunhua ;
Yan, Lifeng .
ADVANCED MATERIALS, 2011, 23 (47) :5679-+
[7]   Synthesis of porous hollow Fe3O4 beads and their applications in lithium ion batteries [J].
Chen, Yu ;
Xia, Hui ;
Lu, Li ;
Xue, Junmin .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (11) :5006-5012
[8]   In Situ Generation of Few-Layer Graphene Coatings on SnO2-SiC Core-Shell Nanoparticles for High-Performance Lithium-Ion Storage [J].
Chen, Zhongxue ;
Zhou, Min ;
Cao, Yuliang ;
Ai, Xinping ;
Yang, Hanxi ;
Liu, Jun .
ADVANCED ENERGY MATERIALS, 2012, 2 (01) :95-102
[9]   Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries [J].
Derrien, Gaelle ;
Hassoun, Jusef ;
Panero, Stefania ;
Scrosati, Bruno .
ADVANCED MATERIALS, 2007, 19 (17) :2336-+
[10]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240