Monitoring differentiation of human embryonic stem cells using real-time PCR

被引:46
作者
Noaksson, K
Zoric, N
Zeng, XM
Rao, MS
Hyllner, J
Semb, H
Kubista, M
Sartipy, P
机构
[1] Cellartis AB, S-41346 Gothenburg, Sweden
[2] TATAA Bioctr, Lundberg Lab, Gothenburg, Sweden
[3] Natl Inst Drug Abuse, Cellular Neurobiol Branch, Dept Hlth & Human Serv, Baltimore, MD USA
[4] NIA, Neurosci Lab, Dept Hlth & Human Serv, Baltimore, MD 21224 USA
[5] Lund Univ, Endocrinol Sect, Lund, Sweden
关键词
human embryonic stem cell; differentiation; real-time polymerase chain reaction; gene expression;
D O I
10.1634/stemcells.2005-0093
中图分类号
Q813 [细胞工程];
学科分类号
摘要
There is a general lack of rapid, sensitive, and quantitative methods for the detection of differentiating human embryonic stem cells (hESCs). Using light microscopy and immunohistochemistry, we observed that morphological changes of differentiating hESCs precede any major alterations in the expression of several commonly used hESC markers (SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, Oct-4, and Nanog). In an attempt to quantify the changes during stochastic differentiation of hESCs, we developed a robust and sensitive multimarker quantitative real-time polymerase chain reaction (QPCR) method. To maximize the sensitivity of the method, we measured the expression of up- and downregulated genes before and after differentiation of the hESCs. Out of the 12 genes assayed, we found it clearly sufficient to determine the relative differentiation state of the cells by calculating a collective expression index based on the mRNA levels of Oct-4, Nanog, Cripto, and (x-fetoprotein. We evaluated the method using different hESC lines maintained in either feeder-dependent or feeder-free culture conditions. The QPCR method is very flexible, and by appropriately selecting reporter genes, the method can be designed for various applications. The combination of QPCR with hESC-based technologies opens novel avenues for high-throughput analysis of hESCs in, for example, pharmacological and cytotoxicity screening. STEM CELLS 2005;23:1460-1467.
引用
收藏
页码:1460 / 1467
页数:8
相关论文
共 37 条
[1]   Unique gene expression signatures of independently-derived human embryonic stem cell lines [J].
Abeyta, MJ ;
Clark, AT ;
Rodriguez, RT ;
Bodnar, MS ;
Pera, RAR ;
Firpo, MT .
HUMAN MOLECULAR GENETICS, 2004, 13 (06) :601-608
[2]   Human feeder layers for human embryonic stem cells [J].
Amit, M ;
Margulets, V ;
Segev, H ;
Shariki, K ;
Laevsky, I ;
Coleman, R ;
Itskovitz-Eldor, J .
BIOLOGY OF REPRODUCTION, 2003, 68 (06) :2150-2156
[3]   Feeder layer- and serum-free culture of human embryonic stem cells [J].
Amit, M ;
Shariki, C ;
Margulets, V ;
Itskovitz-Eldor, J .
BIOLOGY OF REPRODUCTION, 2004, 70 (03) :837-845
[4]   Gene expression in human embryonic stem cell lines: unique molecular signature [J].
Bhattacharya, B ;
Miura, T ;
Brandenberger, R ;
Mejido, J ;
Luo, YQ ;
Yang, AX ;
Joshi, BH ;
Ginis, I ;
Thies, RS ;
Amit, M ;
Lyons, I ;
Condie, BG ;
Itskovitz-Eldor, J ;
Rao, MS ;
Puri, RK .
BLOOD, 2004, 103 (08) :2956-2964
[5]   Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation [J].
Brandenberger, R ;
Wei, H ;
Zhang, S ;
Lei, S ;
Murage, J ;
Fisk, GJ ;
Li, Y ;
Xu, CH ;
Fang, R ;
Guegler, K ;
Rao, MS ;
Mandalam, R ;
Lebkowski, J ;
Stanton, LW .
NATURE BIOTECHNOLOGY, 2004, 22 (06) :707-716
[6]  
Brandenberger Ralph, 2004, BMC Developmental Biology, V4, P1
[7]   Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001 [J].
Brimble, SN ;
Zeng, XM ;
Weiler, DA ;
Luo, YQ ;
Liu, Y ;
Lyons, IG ;
Freed, WJ ;
Robins, AJ ;
Rao, MS ;
Schulz, TC .
STEM CELLS AND DEVELOPMENT, 2004, 13 (06) :585-597
[8]   Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays [J].
Bustin, SA .
JOURNAL OF MOLECULAR ENDOCRINOLOGY, 2000, 25 (02) :169-193
[9]   Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells [J].
Chambers, I ;
Colby, D ;
Robertson, M ;
Nichols, J ;
Lee, S ;
Tweedie, S ;
Smith, A .
CELL, 2003, 113 (05) :643-655
[10]   Expansion of pluripotent human embryonic stem cells on human feeders [J].
Choo, ABH ;
Padmanabhan, J ;
Chin, ACP ;
Oh, SKW .
BIOTECHNOLOGY AND BIOENGINEERING, 2004, 88 (03) :321-331