Synthesis, characterization and catalytic activity of birnessite type potassium manganese oxide nanotubes and nanorods

被引:17
作者
Ahmed, Khalid Abdelazez Mohamed [1 ,2 ]
Huang, Kaixun [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Chem & Chem Engn, Wuhan 430074, Peoples R China
[2] Al Neelain Univ, Dept Chem, Sch Chem & Chem Technol, Fac Sci & Technol, Khartoum, Sudan
关键词
Birnessite-type manganese oxide; Nanotubes; Nanorods; Calcination; Catalysis; HYDROTHERMAL SYNTHESIS; ALPHA-MNO2; NANOTUBES; CONTROLLED GROWTH; NANOSTRUCTURES; FABRICATION; NANOWIRE; ARRAYS; TIO2; DEPOSITION;
D O I
10.1016/j.matchemphys.2012.01.009
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Birnessite-type manganese oxide nanotubes and nanorods were synthesized via a calcination process using manganese acetate and potassium hydroxide as precursors in presence of polyethylene glycol-melamine-formaldehyde. As-prepared products were characterized by XRD, FT-IR, FE-SEM, TEM, SA-ED, HR-TEM, Brunauer-Emmett-Teller (BET) and TGA analyses. The influences of reaction temperature and time on the morphology of manganese oxide nanocrystals were investigated. The oriented attachment-thermodynamical (OA-TD) process is suggested to describe the transition from tube to rod structure. Their capability of catalytic degradation of safranin O was compared. The results indicate that birnessite-type manganese oxide nanotube has higher catalytic activity for than nanorod crystal in aqueous solution, because it has a larger surface area. The decomposition of safranin O follows pseudo-first order kinetics and is markedly affected by pH. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:605 / 610
页数:6
相关论文
共 49 条
[1]   End-closed NiCoFe-B nanotube arrays by electroless method [J].
Azizi, A. ;
Mohammadi, M. ;
Sadrnezhaad, S. K. .
MATERIALS LETTERS, 2011, 65 (02) :289-292
[2]   Fabrication of PbCrO4 nanostructures:: from nanotubes to nanorods [J].
Chen, D ;
Tang, KB ;
Liang, ZH ;
Liu, YK ;
Zheng, HG .
NANOTECHNOLOGY, 2005, 16 (11) :2619-2624
[3]   Hydrothermal synthesis and characterization of K chi MnO2 center dot gamma H2O [J].
Chen, RJ ;
Zavalij, P ;
Whittingham, MS .
CHEMISTRY OF MATERIALS, 1996, 8 (06) :1275-1280
[4]   PEG-assisted synthesis of ZnO nanotubes [J].
Duan, J ;
Huang, XT ;
Wang, E .
MATERIALS LETTERS, 2006, 60 (15) :1918-1921
[5]   Single-crystal gallium nitride nanotubes [J].
Goldberger, J ;
He, RR ;
Zhang, YF ;
Lee, SW ;
Yan, HQ ;
Choi, HJ ;
Yang, PD .
NATURE, 2003, 422 (6932) :599-602
[6]   Preparation and characterization of γ-AlOOH nanotubes and nanorods [J].
Hou, HW ;
Xie, Y ;
Yang, Q ;
Guo, QX ;
Tan, CR .
NANOTECHNOLOGY, 2005, 16 (06) :741-745
[7]   Layer-by-layer nanotube template synthesis [J].
Hou, SF ;
Harrell, CC ;
Trofin, L ;
Kohli, P ;
Martin, CR .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (18) :5674-5675
[8]   TiO2 nanotube, nanowire, and rhomboid-shaped particle thin films fixed on a titanium metal plate [J].
Inoue, Yuko ;
Noda, Iwao ;
Torikai, Toshio ;
Watari, Takanori ;
Hotokebuchi, Takao ;
Yada, Mitsunori .
JOURNAL OF SOLID STATE CHEMISTRY, 2010, 183 (01) :57-64
[9]   Shape-selective synthesis, magnetic properties, and catalytic activity of single crystalline β-MnO2 nanoparticles [J].
Jana, Subhra ;
Basu, Soumen ;
Pande, Surojit ;
Ghosh, Suffit Kumar ;
Pal, Tarasankar .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (44) :16272-16277
[10]   Light-induced hydrolysis of nitriles by photoproduced α-MnO2 nanorods on polystyrene beads [J].
Jana, Subhra ;
Praharaj, Snigdhamayee ;
Panigrahi, Sudipa ;
Basu, Soumen ;
Pande, Surojit ;
Chang, Chien-Hsiang ;
Pal, Tarasankar .
ORGANIC LETTERS, 2007, 9 (11) :2191-2193