Geometric dynamical observables in rare gas crystals

被引:8
作者
Casetti, L [1 ]
Macchi, A [1 ]
机构
[1] INFM,UNITA FIRENZE,I-50125 FLORENCE,ITALY
来源
PHYSICAL REVIEW E | 1997年 / 55卷 / 03期
关键词
STRONG STOCHASTICITY THRESHOLD; LARGE HAMILTONIAN-SYSTEMS; EQUIPARTITION THRESHOLD; EXPONENTS; OSCILLATORS; ERGODICITY; CHAINS; TIMES; MODEL;
D O I
10.1103/PhysRevE.55.2539
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a detailed description of how a differential geometric approach to Hamiltonian dynamics can be used for determining the existence of a crossover between different dynamical regimes in a realistic system, a model of a rare gas solid. Such a geometric approach allows us to locate the energy threshold between weakly and strongly chaotic regimes, and to estimate the largest Lyapunov exponent; We show how standard methods of classical statistical mechanics, i.e., Monte Carlo simulations, can be used for our computational purposes. Finally we consider a Lennard-Jones crystal modeling solid xenon. The value of the energy threshold turns out to be in excellent agreement with the numerical estimate based on the crossover between slow and fast relaxation to equilibrium obtained in a previous work by molecular dynamics simulations.
引用
收藏
页码:2539 / 2545
页数:7
相关论文
共 30 条
[1]   Curvature, torsion, microcanonical density and stochastic transition [J].
Alabiso, C ;
Besagni, N ;
Casartelli, M ;
Marenzoni, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (14) :3733-3747
[2]  
[Anonymous], 1992, Riemannian Geometry
[3]   ORDERED AND STOCHASTIC-BEHAVIOR IN A TWO-DIMENSIONAL LENNARD-JONES SYSTEM [J].
BENETTIN, G ;
TENENBAUM, A .
PHYSICAL REVIEW A, 1983, 28 (05) :3020-3029
[4]   KOLMOGOROV ENTROPY AND NUMERICAL EXPERIMENTS [J].
BENETTIN, G ;
GALGANI, L ;
STRELCYN, JM .
PHYSICAL REVIEW A, 1976, 14 (06) :2338-2345
[5]   ANHARMONIC CHAIN WITH LENNARD-JONES INTERACTION [J].
BOCCHIERI, P ;
SCOTTI, A ;
BEARZI, B ;
LOINGER, A .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1970, 2 (05) :2013-+
[6]   RELAXATION-TIMES IN AN ANHARMONIC CRYSTAL WITH DILUTED IMPURITIES [J].
CASETTI, L ;
LIVI, R ;
MACCHI, A ;
PETTINI, M .
EUROPHYSICS LETTERS, 1995, 32 (07) :549-554
[7]   ANALYTIC COMPUTATION OF THE STRONG STOCHASTICITY THRESHOLD IN HAMILTONIAN-DYNAMICS USING RIEMANNIAN GEOMETRY [J].
CASETTI, L ;
PETTINI, M .
PHYSICAL REVIEW E, 1993, 48 (06) :4320-4332
[8]   Riemannian theory of Hamiltonian chaos and Lyapunov exponents [J].
Casetti, L ;
Clementi, C ;
Pettini, M .
PHYSICAL REVIEW E, 1996, 54 (06) :5969-5984
[9]   GAUSSIAN MODEL FOR CHAOTIC INSTABILITY OF HAMILTONIAN FLOWS [J].
CASETTI, L ;
LIVI, R ;
PETTINI, M .
PHYSICAL REVIEW LETTERS, 1995, 74 (03) :375-378
[10]  
CASETTI L, UNPUB