Root excretion of carboxylic acids and protons in phosphorus-deficient plants

被引:509
作者
Neumann, G [1 ]
Römheld, V [1 ]
机构
[1] Univ Hohenheim, Inst Pflanzenernahrung 330, D-70593 Stuttgart, Germany
关键词
aconitase; organic acids; phosphoenolpyruvate carboxylase; phosphorus deficiency; rhizosphere acidification; root exudates;
D O I
10.1023/A:1004380832118
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Phosphorus deficiency-induced metabolic changes related to exudation of carboxylic acids and protons were compared in roots of wheat (Triticum aestivum L. cv Haro), tomato (Lycopersicon esculentum L., cv. Moneymaker), chickpea (Cicer arietinum) and white lupin (Lupinus albus L. cv. Amiga), grown in a hydroponic culture system. P deficiency strongly increased the net release of protons from roots of tomato, chickpea and white lupin, but only small effects were observed in wheat. Release of protons coincided with increased exudation of carboxylic acids in roots of chickpea and white lupin, but not in those of tomato and wheat. P deficiency-induced exudation of carboxylic acids in chickpea and white lupin was associated with a larger increase of carboxylic acid concentrations in the roots and lower accumulation of carboxylates in the shoot tissue compared to that in wheat and tomato. - Citric acid was one of the major organic acids accumulated in the roots of all investigated species in response to P deficiency, and this was associated with increased activity and enzyme protein levels of PEP carboxylase, which is required for biosynthesis of citrate. Accumulation of citric acid was most pronounced in the roots of P-deficient white lupin, chickpea and tomato. Increased PEP carboxylase activity in the roots of these plants coincided with decreased activity of aconitase, which is involved in the breakdown of citric acid in the TCA cycle. In the roots of P-deficient wheat plants, however, the activities of both PEP carboxylase and aconitase were enhanced, which was associated with little accumulation of citric acid. The results suggest that P deficiency-induced exudation of carboxylic acids depends on the ability to accumulate carboxylic acids in the root tissue, which in turn is determined by biosynthesis, degradation and partitioning of carboxylic acids or related precursors between roots and shoot. In some plant species such as white lupin, there are indications for a specific transport mechanism (anion channel), involved in root exudation of extraordinary high amounts of citric acid.
引用
收藏
页码:121 / 130
页数:10
相关论文
共 27 条
[1]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[2]  
DEIST J, 1971, Agrochemophysica, V3, P35
[3]   RHIZOSPHERE ACIDIFICATION AS A RESPONSE TO IRON-DEFICIENCY IN BEAN-PLANTS [J].
DEVOS, CR ;
LUBBERDING, HJ ;
BIENFAIT, HF .
PLANT PHYSIOLOGY, 1986, 81 (03) :842-846
[4]   CITRIC-ACID EXCRETION AND PRECIPITATION OF CALCIUM CITRATE IN THE RHIZOSPHERE OF WHITE LUPIN (LUPINUS-ALBUS L) [J].
DINKELAKER, B ;
ROMHELD, V ;
MARSCHNER, H .
PLANT CELL AND ENVIRONMENT, 1989, 12 (03) :285-292
[5]  
DINKELAKER B, 1990, THESIS U HOHENHEIM S
[6]  
Dinkelaker Barbara, 1995, Botanica Acta, V108, P183
[7]   PHOSPHORUS AND ALUMINUM RELEASE FROM A SPODIC HORIZON MEDIATED BY ORGANIC-ACIDS [J].
FOX, TR ;
COMERFORD, NB ;
MCFEE, WW .
SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1990, 54 (06) :1763-1767
[8]   MOBILIZATION OF PHOSPHATE IN DIFFERENT SOILS BY RYEGRASS SUPPLIED WITH AMMONIUM OR NITRATE [J].
GAHOONIA, TS ;
CLAASSEN, N ;
JUNGK, A .
PLANT AND SOIL, 1992, 140 (02) :241-248
[9]   THE ACQUISITION OF PHOSPHORUS BY LUPINUS-ALBUS L .3. THE PROBABLE MECHANISM BY WHICH PHOSPHORUS MOVEMENT IN THE SOIL ROOT INTERFACE IS ENHANCED [J].
GARDNER, WK ;
BARBER, DA ;
PARBERY, DG .
PLANT AND SOIL, 1983, 70 (01) :107-124
[10]  
Gerke J, 1995, CHEMISCHE PROZESSE N