A review of statistical methods for expression quantitative trait loci mapping

被引:47
作者
Kendziorski, Christina
Wang, Ping
机构
[1] Univ Wisconsin, Dept Biostat & Med Informat, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
关键词
D O I
10.1007/s00335-005-0189-6
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
With high-throughput technologies now widely available, investigators can easily measure thousands of phenotypes for quantitative trait loci (QTL) mapping. Microarray measurements are particularly amenable to QTL mapping, as evidenced by a number of recent studies demonstrating utility across a broad range of biological endeavors. The early success stories have impelled a rapid increase in both the number and complexity of expression QTL (eQTL) experiments. Consequently, there is a need to consider the statistical principles involved in the design and analysis of these experiments and the methods currently being used. In this article we review these principles and methods and discuss the open questions most likely to yield significant progress toward increasing the amount of meaningful information obtained from eQTL mapping experiments.
引用
收藏
页码:509 / 517
页数:9
相关论文
共 58 条
  • [1] Standardizing global gene expression analysis between laboratories and across platforms
    Bammler, T
    Beyer, RP
    Bhattacharya, S
    Boorman, GA
    Boyles, A
    Bradford, BU
    Bumgarner, RE
    Bushel, PR
    Chaturvedi, K
    Choi, D
    Cunningham, ML
    Dengs, S
    Dressman, HK
    Fannin, RD
    Farun, FM
    Freedman, JH
    Fry, RC
    Harper, A
    Humble, MC
    Hurban, P
    Kavanagh, TJ
    Kaufmann, WK
    Kerr, KF
    Jing, L
    Lapidus, JA
    Lasarev, MR
    Li, J
    Li, YJ
    Lobenhofer, EK
    Lu, X
    Malek, RL
    Milton, S
    Nagalla, SR
    O'Malley, JP
    Palmer, VS
    Pattee, P
    Paules, RS
    Perou, CM
    Phillips, K
    Qin, LX
    Qiu, Y
    Quigley, SD
    Rodland, M
    Rusyn, I
    Samson, LD
    Schwartz, DA
    Shi, Y
    Shin, JL
    Sieber, SO
    Slifer, S
    [J]. NATURE METHODS, 2005, 2 (05) : 351 - 356
  • [2] Significance analysis of functional categories in gene expression studies: a structured permutation approach
    Barry, WT
    Nobel, AB
    Wright, FA
    [J]. BIOINFORMATICS, 2005, 21 (09) : 1943 - 1949
  • [3] Genetical genomics analysis of a yeast segregant population for transcription network inference
    Bing, N
    Hoeschele, I
    [J]. GENETICS, 2005, 170 (02) : 533 - 542
  • [4] Calculation of the minimum number of replicate spots required for detection of significant gene expression fold change in microarray experiments
    Black, MA
    Doerge, RW
    [J]. BIOINFORMATICS, 2002, 18 (12) : 1609 - 1616
  • [5] The landscape of genetic complexity across 5,700 gene expression traits in yeast
    Brem, RB
    Kruglyak, L
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (05) : 1572 - 1577
  • [6] Genetic dissection of transcriptional regulation in budding yeast
    Brem, RB
    Yvert, G
    Clinton, R
    Kruglyak, L
    [J]. SCIENCE, 2002, 296 (5568) : 752 - 755
  • [7] Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics'
    Bystrykh, L
    Weersing, E
    Dontje, B
    Sutton, S
    Pletcher, MT
    Wiltshire, T
    Su, AI
    Vellenga, E
    Wang, JT
    Manly, KF
    Lu, L
    Chesler, EJ
    Alberts, R
    Jansen, RC
    Williams, RW
    Cooke, MP
    de Haan, G
    [J]. NATURE GENETICS, 2005, 37 (03) : 225 - 232
  • [8] Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function
    Chesler, EJ
    Lu, L
    Shou, SM
    Qu, YH
    Gu, J
    Wang, JT
    Hsu, HC
    Mountz, JD
    Baldwin, NE
    Langston, MA
    Threadgill, DW
    Manly, KF
    Williams, RW
    [J]. NATURE GENETICS, 2005, 37 (03) : 233 - 242
  • [9] Fundamentals of experimental design for cDNA microarrays
    Churchill, GA
    [J]. NATURE GENETICS, 2002, 32 (Suppl 4) : 490 - 495
  • [10] Cui XQ, 2003, METHODS OF MICROARRAY DATA ANALYSIS III, P139