Facial expression recognition and its degree estimation

被引:36
作者
Kimura, S
Yachida, M
机构
来源
1997 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS | 1997年
关键词
D O I
10.1109/CVPR.1997.609338
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The purpose of this study is not only to recognize some kind of facial expressions which is associated with human emotion but also to estimate its degree. Our method is based on the idea that facial expression recognition can be achieved by extracting a variation from expressionless face with considering face area as a whole pattern. For the purpose of extracting subtle changes in the face such as the degree of expressions, it is necessary to eliminate the individuality appearing in the facial image. Using a elastic net model, a variation of facial expression is represented as motion vectors of the deformed Net from a facial edge image. Then, applying K-L expansion, the change of facial expression represented as the motion vectors of nodes is mapped into low dimensional eigen space, and estimation is achieved by projecting input images on to the Emotion Space. In this paper we have constructed three kinds of expression models: happiness, anger, surprise, curd experimental results are evaluated.
引用
收藏
页码:295 / 300
页数:6
相关论文
empty
未找到相关数据